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ABSTRACT 

      Hypericum species are a large family of plants with potential medicinal value. To date, 

only H. perforatum has been thoroughly studied for its bioactivities due to its popularity 

among depression patients. Other than its anti-depression and anti-viral activities, H. 

perforatum also has anti-inflammatory activity, which is not well characterized. Previous 

studies by Hammer et al. (2007) evaluated the inhibitory effect of different H. perforatum 

extracts on lipopolysaccharide (LPS)-induced macrophage prostaglandin E2 (PGE2) 

production. The subsequent study also identified 4 synergistic anti-inflammatory constituents 

in a fraction of the H. perforatum extract, namely pseudohypericin, quercetin, amentoflavone, 

and chlorogenic acid (referred to as the 4 compounds). Lastly, the janus kinase - signal 

transducer and activator of transcription (JAK-STAT) pathway were proposed as molecular 

targets for the 4 compounds‟ anti-inflammatory activity. The current study set out to test the 

central hypothesis that the 4 compounds contributed significantly to the anti-inflammatory 

activity of the H. perforatum extract by inducing suppressor of cytokine signaling 3 (SOCS3) 

both in vitro and in vivo. 

      The first part of this study was to compare the chemical profiles and anti-inflammatory 

potential of extracts of H. perforatum, H. gentianoides, H. beanii, H. densiflorum, H. 

balearicum, H. forrestii, H.bellum, and H. patulum. At a concentration of 20 µg/mL, all nine 

extracts included had significant inhibitory effect on LPS-induced PGE2 and nitric oxide 

(NO) production in RAW 264.7 mouse macrophages. The extracts made from H. perforatum 

and H. gentianoides had distinctive chromatograms in LC-MS analysis and relatively 

stronger PGE2 and NO reducing efficacy. The 4 compounds accounted for a portion of the H. 
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perforatum extract‟s PGE2 inhibition and the majority of its NO and interleukin (IL)-1β 

reducing effects. LPS-stimulated tumor necrosis factor (TNF)-α production was only 

suppressed by the 4 compounds but not by the extract, suggesting the presence of 

counteractive constituents. Uliginosin A, one of the acylphloroglucinols found in the H. 

gentianoides extract, inhibited PGE2 and NO by more than 70% at 2 µM.  

      Then, the importance of SOCS3 activation in the anti-inflammatory potential of the H. 

perforatum extract and the 4 compounds was investigated using SOCS3 knockdown RAW 

264.7 macrophages. The results indicated that pseudohypericin was the major PGE2 and NO 

inhibiting constituent among the 4 compounds and required SOCS3 activation to exert the 

effect. At the same time, amentoflavone and quercetin accounted for the inhibition of pro-

inflammatory cytokines TNF-α, IL-6, and IL-1β in a SOCS3 independent manner. 

Interestingly, although the 4 compounds‟ PGE2 and NO inhibitory activities were 

compromised with SOCS3 knockdown, H. perforatum extract‟s efficacy was not affected, 

suggested that components other than the 4 compounds inhibited these inflammatory 

mediators without activating SOCS3. 

      Because a cell culture model cannot comprehensively reflect the complex nature of 

inflammation, influenza A infected-BALB/c mice were used to assess the in vivo immune-

regulatory impact of H. perforatum. When the mice were infected with a high dose of H1N1 

virus, H. perforatum oral treatment at 110 mg/kg body weight significantly increased viral 

titer in the lung 5 days post-infection. H. perforatum treatment also resulted in elevation of 

18 pro-inflammatory cytokine and chemokine levels and increased the number of pro-

inflammatory cells in the bronchoalveolar lavage, as compared to the 5% ethanol vehicle 
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treatment. SOCS3 transcription in the lung was elevated after viral infection, and further 

potentiated by the H. perforatum extract. These results suggested that influenza might be a 

contraindication for H. perforatum, because SOCS3 elevation could impair the immune 

response against influenza virus infection, possibly through blocking type I interferon 

signaling. H. perforatum was applied to mice only during the later phase of influenza 

infection, in the hope that inflammatory tissue damage can be alleviated. But no significant 

improvement was found. 

      Overall, the current study showed that the 4 compounds in H. perforatum partially 

depend on SOCS3 activation to exert their in vitro anti-inflammatory activity. However, the 

elevated SOCS3 by H. perforatum during influenza infection can be detrimental due to the 

impaired immune response.
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CHAPTER 1: INTRODUCTION 

General Introduction 

 Hypericum perforatum, more commonly known as St. John‟s wort, is a perennial 

herbaceous plant native to Asia and Europe (1-2). Traditionally, H. perforatum has been used 

to treat various conditions including anxiety, infection, and wound healing (3-4). In the past 

century, the majority of the research and clinical focus of H. perforatum usage has been on 

its anti-depression activity, which has propelled its popularity and made it among the top-

selling dietary supplements in the market with approximately $60 million annual sales in 

2006, despite a continuous drop since year 2000 (1, 5). Although its efficacy against mild-to-

moderate depression has drawn the most attention, there is increasing interest in the anti-

inflammatory and anti-microbial properties of H. perforatum products, which could be 

helpful for patients with respiratory tract infection, inflammatory bowel disease, and even 

cancer (6-8).  

It is evident now that the active components in H. perforatum regarding the anti-

inflammatory potential partially overlap with those that have been shown to contribute to the 

anti-depression effect, which includes hypericin, pseudohypericin, and hyperforin (6, 9). 

Previously, Hammer et al. (2008) demonstrated that a group of four compounds comprised of 

pseudohypericin, amentoflavone, quercetin, and chlorogenic acid in a fraction of H. 

perforatum ethanol extract had strong synergistic inhibitory effect on lipopolysaccharide 

(LPS)-induced prostaglandin E2 (PGE2) in RAW 264.7 mouse macrophages (10). However, 

these components, collectively called the „4 compounds‟, are just a small group that represent 

potentially anti-inflammatory constituents that cover naphthodianthrones, flavonoids, bi-
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flavonoids, and caffeic acid derivatives (11). As pointed out by Williamson et al. (2001), the 

myriads of anti-inflammatory compounds in plant extracts would possibly interact with each 

other and thus result in synergy or counteraction (12). A good example of this would be the 4 

compounds reported by Hammer et al. (2008), which were not active individually at the 

concentrations in the fraction, but highly active when combined (10). Therefore, whether 

these 4 compounds are important for the overall activity of the extract is one of the main 

questions to be answered by the current study, given that most people consume H. 

perforatum supplements as extracts. 

To assess the contribution of pseudohypericin, quercetin, amentoflavone, and 

chlorogenic acid to the anti-inflammatory potentials of H. perforatum ethanol extract, the 

amount of the 4 compounds was quantified. These compounds as in the extract were applied 

to LPS-induced RAW 264.7 macrophages and peritoneal macrophages individually or 

together in order to evaluate. The result indicated that the 4 compounds together accounted 

for a certain proportion of the inhibitory effect of the extract on inflammatory mediators and 

cytokines. Interestingly, the extract did not inhibit tumor necrosis factor (TNF)-α, while the 4 

compounds did, suggesting contradictory interaction between the 4 compounds and other 

constituents in the complex. Overall, the 4 compounds were indeed major anti-inflammatory 

components not only in an active fraction, but in the Soxhlet ethanol extract of H. perforatum. 

At the same time, pseudohypericin was the only constituent that could significantly inhibit 

several inflammatory markers in cell culture by itself, proving its pivotal role among the 4 

compounds as Hammer et al. (2008) showed (10). 
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Although H. perforatum has been the species most widely used and studied, there are 

over 400 species of Hypericum, many of which have distinctive chemical profiles and 

associated medicinal potential (13-14). For example, hypericin and pseudohypericin are often 

considered as the characteristic compounds of Hypericum genus, but their abundance varies 

widely across different species, as reported by Kartnig et al. (1996) (15). Recently, a group of 

compounds known as acylphloroglucinols have been identified in organic solvent extracts of 

several Hypericum species (16-18). Henry et al. (2009) demonstrated anti-inflammatory, 

anti-tumor and anti-microbial activities of acylphloroglucinols isolated from H. densiflorum 

in cell cultures at a relatively high concentration of 25 µg/mL (17). Hillwig et al. (2008) 

showed that a lipophilic fraction of H. gentianoides methanol extracts that was enriched with 

acylphloroglucinols had significant inhibition on PGE2 at as low as 1 µg/mL (18). In order to 

identify the more promising Hypericum extract with anti-inflammatory potential, nine 

species and accessions were screened at 20 µg/mL for their inhibitory effect on LPS-

stimulated PGE2 and nitric oxide (NO) production in RAW 264.7 cells. Aside from H. 

perforatum, H. gentianoides extract was found to potently reduce PGE2 and NO produced by 

macrophages. Similar to Hillwig et al. (2008)‟s prior findings, the more lipophilic fractions 

of H. gentianoides extract were highly anti-inflammatory in cell culture and enriched with 

acylphloroglucinols. Among the known acylphloroglucinols, uliginosin A in the extract and 

fractions was quantified and applied to LPS-stimulated macrophages to simulate the 

inhibitory activity of the extract and fractions. The results revealed that uliginosin A by itself 

was capable of inhibiting inflammatory mediators and cytokines at as low as 2 µM, thus 

partially accounting for the bioactivity of the H. gentianoides extract and its lipophilic 

fractions. 
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Using microarray and quantitative real-time polymerase chain reaction (qRT-PCR), 

Hammer et al. (2010) detected genes whose transcription was affected by the treatment of the 

active fraction of H. perforatum extract and the 4 compounds (19). These genes were 

enriched in pathways related to eicosanoid biosynthesis and the janus kinase (JAK)-signal 

transducer and activator of transcription (STAT) pathway, which are intertwined by the 

mitogen-activated protein kinase (MAPK) pathway. In particular, the transcription of a 

negative regulator, suppressor of cytokine signaling 3 (SOCS3) in RAW 264.7 macrophages 

was elevated by the plant material treatment, suggesting its being a molecular target of the 4 

compounds (19-20). To further pursue this hypothesis, SOCS3 was knocked down in the 

current study using specific short interfering RNA (siRNA), resulting in compromised PGE2 

and NO inhibition by the 4 compounds, but not by the H. perforatum extract. Western-blots 

and enzyme activity assays indicated that the reduced PGE2 found with treatment by the 4 

compounds could be attributed to cyclooxygenase-2 (COX-2) activity inhibition, while the 

decreased NO possibly resulted from L-arginine limitation that reduced iNOS substrate 

supply. Because the extract did not require SOCS3 to exert its activity, and the 4 compounds 

had a suppressive effect on interleukin (IL)-6 and TNF-α, it is reasonable to speculate that 

components in the extract other than the 4 compounds interfered with SOCS3 independent 

inflammatory pathways. 

The inflammatory response is a complex and dynamic process that involves the 

coordination of multiple cell populations in the tissue (21). Therefore, it is necessary to 

employ animal models to validate the anti-inflammatory potential of H. perforatum extract in 

cultured cells. Influenza has been a major public health issue and can cause as many as 
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40,000 annual deaths in the US alone (22). Influenza virus induced lung inflammation is the 

culprit of tissue lesion and is certainly a condition where H. perforatum‟s bio-activity could 

be proven to be beneficial. BALB/c mice were infected with A/PR/8/34 H1N1 influenza 

virus and treated with H. perforatum extract orally at different stages of the disease 

progression. Eventually, the impact of the treatment compared to vehicle control was 

assessed by measuring cytokine and cell profiles of bronchoalveolar lavage (BAL), lung 

lesion score, lung viral titer, as well as illness severity of the mice (23). The results indicated 

potential contraindication as the H. perforatum extract increased lung viral tier, BAL pro-

inflammatory cell population, and cytokine/chemokine levels. 

Dissertation Organization 

This dissertation contains an overall introduction and an in-depth literature review, 

followed by three manuscripts that respectively describe individual studies on comparisons 

between H. perforatum and H. gentianoides, the importance of SOCS3 to the 4 compounds‟ 

activity, and the impact of H. perforatum extract on influenza-infected mice.  These 

manuscripts included inputs from the co-authors, who cultivated and harvested the plant 

materials, extracted and fractionated the plant materials, conducted chemical analysis, 

collaborated in and conducted sample analyses in animal studies, assisted in statistical 

analysis, and contributed to manuscript preparation. The co-authors are listed at the 

beginning of each chapter. The first manuscript has been recommended for publication after 

minor revision, the second and third manuscripts are being prepared for re-submission and 

first-submission, respectively. After the three manuscripts, there is a general conclusion 

section that discusses the overall findings. Aside from this dissertation, a published 
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manuscript described my early Ph. D. work on the anti-inflammatory activity of Prunella 

vulgaris (24).  

List of References 

1. Bilia, A. R.; Gallori, S.; Vincieri, F. F., St. John's wort and depression - Efficacy, safety and 
tolerability - an update. Life Sci 2002, 70, (26), 3077-3096. 
2. Barnes, J.; Anderson, L. A.; Phillipson, J. D., St John's wort (Hypericum perforatum L.): a 
review of its chemistry, pharmacology and clinical properties. Journal of Pharmacy and 
Pharmacology 2001, 53, (5), 583-600. 
3. Schempp, C. M.; Pelz, K.; Wittmer, A.; Schopf, E.; Simon, J. C., Antibacterial activity of 
hyperforin from St John's wort, against multiresistant Staphylococcus aureus and gram-positive 
bacteria. Lancet 1999, 353, (9170), 2129. 
4. Suntar, I.; Akkol, E. K.; Keles, H.; Oktem, A.; Baser, K. H.; Yesilada, E., A novel wound healing 
ointment: A formulation of Hypericum perforatum oil and sage and oregano essential oils based on 
traditional Turkish knowledge. J Ethnopharmacol 2010. 
5. Tilburt, J. C.; Emanuel, E. J.; Miller, F. G., Does the evidence make a difference in consumer 
behavior? Sales of supplements before and after publication of negative research results. J Gen 
Intern Med 2008, 23, (9), 1495-1498. 
6. Birt, D. F.; Widrlechner, M. P.; Hammer, K. D.; Hillwig, M. L.; Wei, J.; Kraus, G. A.; Murphy, P. 
A.; McCoy, J.; Wurtele, E. S.; Neighbors, J. D.; Wiemer, D. F.; Maury, W. J.; Price, J. P., Hypericum in 
infection: Identification of anti-viral and anti-inflammatory constituents. Pharm Biol 2009, 47, (8), 
774-782. 
7. Di Paola, R.; Mazzon, E.; Muia, C.; Crisafulli, C.; Genovese, T.; Di Bella, P.; Esposito, E.; 
Menegazzi, M.; Meli, R.; Suzuki, H.; Cuzzocrea, S., Protective effect of Hypericum perforatum in 
zymosan-induced multiple organ dysfunction syndrome: relationship to its inhibitory effect on nitric 
oxide production and its peroxynitrite scavenging activity. Nitric Oxide 2007, 16, (1), 118-30. 
8. Hu, Z. P.; Yang, X. X.; Chan, S. Y.; Xu, A. L.; Duan, W.; Zhu, Y. Z.; Sheu, F. S.; Boelsterli, U. A.; 
Chan, E.; Zhang, Q.; Wang, J. C.; Ee, P. L.; Koh, H. L.; Huang, M.; Zhou, S. F., St. John's wort attenuates 
irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and 
inhibition of intestinal epithelial apoptosis. Toxicol Appl Pharmacol 2006, 216, (2), 225-37. 
9. Medina, M. A.; Martinez-Poveda, B.; Amores-Sanchez, M. I.; Quesada, A. R., Hyperforin: 
more than an antidepressant bioactive compound? Life Sci 2006, 79, (2), 105-11. 
10. Hammer, K. D.; Hillwig, M. L.; Neighbors, J. D.; Sim, Y. J.; Kohut, M. L.; Wiemer, D. F.; 
Wurtele, E. S.; Birt, D. F., Pseudohypericin is necessary for the light-activated inhibition of 
prostaglandin E2 pathways by a 4 component system mimicking an Hypericum perforatum fraction. 
Phytochemistry 2008, 69, (12), 2354-62. 
11. Wilhelm, K. P.; Biel, S.; Siegers, C. P., Role of flavonoids in controlling the phototoxicity of 
Hypericum perforatum extracts. Phytomedicine 2001, 8, (4), 306-9. 
12. Williamson, E. M., Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 
(5), 401-9. 
13. Kitanov, G. M., Hypericin and pseudohypericin in some Hypericum species. Biochem Syst 
Ecol 2001, 29, (2), 171-178. 



www.manaraa.com

7 
 

14. Robson, N. K. B., Studies in the genus Hypericum L. (Guttiferae). I. Infrageneric classfication. 
1977; Vol. 5, p 293. 
15. Kartnig, T.; Gobel, I.; Heydel, B., Production of hypericin, pseudohypericin and flavonoids in 
cell cultures of various Hypericum species and their chemotypes. Planta Med 1996, 62, (1), 51-3. 
16. Crockett, S. L.; Wenzig, E.-M.; Kunert, O.; Bauer, R., Anti-inflammatory phloroglucinol 
derivatives from Hypericum empetrifolium. Phytochemistry Letters 2008, 1, (1), 37-43. 
17. Henry, G. E.; Campbell, M. S.; Zelinsky, A. A.; Liu, Y.; Bowen-Forbes, C. S.; Li, L.; Nair, M. G.; 
Rowley, D. C.; Seeram, N. P., Bioactive acylphloroglucinols from Hypericum densiflorum. Phytother 
Res 2009. 
18. Hillwig, M. L.; Hammer, K. D.; Birt, D. F.; Wurtele, E. S., Characterizing the metabolic 
fingerprint and anti-inflammatory activity of Hypericum gentianoides. J Agric Food Chem 2008, 56, 
(12), 4359-66. 
19. Hammer, K. D.; Yum, M. Y.; Dixon, P. M.; Birt, D. F., Identification of JAK-STAT pathways as 
important for the anti-inflammatory activity of a Hypericum perforatum fraction and bioactive 
constituents in RAW 264.7 mouse macrophages. Phytochemistry 2010, 71, (7), 716-25. 
20. Yoshimura, A.; Naka, T.; Kubo, M., SOCS proteins, cytokine signalling and immune regulation. 
Nat Rev Immunol 2007, 7, (6), 454-65. 
21. Libby, P., Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr 
Rev 2007, 65, (12 Pt 2), S140-6. 
22. Dushoff, J.; Plotkin, J. B.; Viboud, C.; Earn, D. J.; Simonsen, L., Mortality due to influenza in 
the United States--an annualized regression approach using multiple-cause mortality data. Am J 
Epidemiol 2006, 163, (2), 181-7. 
23. Sim, Y. J.; Yu, S.; Yoon, K. J.; Loiacono, C. M.; Kohut, M. L., Chronic exercise reduces illness 
severity, decreases viral load, and results in greater anti-inflammatory effects than acute exercise 
during influenza infection. J Infect Dis 2009, 200, (9), 1434-42. 
24. Huang, N.; Hauck, C.; Yum, M. Y.; Rizshsky, L.; Widrlechner, M. P.; McCoy, J. A.; Murphy, P. 
A.; Dixon, P. M.; Nikolau, B. J.; Birt, D. F., Rosmarinic acid in Prunella vulgaris ethanol extract inhibits 
lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J 
Agric Food Chem 2009, 57, (22), 10579-89. 
 

 

  



www.manaraa.com

8 

CHAPTER 2: LITERATURE REVIEW 

Species of Hypericum genus 

 The Genus Hypericum L. (Guttiferae/Clusiaceae/Hypericaceae) contains 465 species 

globally, according to Robson et al. (1977 and 2002) and Nogueira et al. (2008) (1-3). These 

species cover a wide variety of plants ranging from herbs, shrubs, to trees mostly found in the 

tropical and temperate mountain areas in Europe and Asia (4). The genus name “Hypericum” 

could mean “over the apparition” which in Greek is hypo- or hyper-eikon (5). Some common 

characteristics of this flowering genus include glands filled with resin, stamens bundled 

together, and free style (6). According to floral and vegetative morphologies, Hypericum 

species can be further divided into 36 taxonomical sections (2). While discriminating 

herbaceous Hypericum species from its woody relatives could be easy just by visual 

inspection, the task of telling the differences between some species with similar external 

morphology, microscopic traits, and even chemical profiles has led to the use of molecular 

techniques that test the genetic authenticity of certain species, as described by Crockett et al. 

and Smelcerovic et al. (6-7). 

Today, dietary supplement products made from Hypericum perforatum (H. perforatum) 

make up approximately 56 million USD worth of the supplement market , highlighting its 

status as one of the most widely used botanical supplements (8-9). The earliest recorded 

medicinal usage of H. perforatum can be traced back to ~200 BC by Nikander, a Greek 

physician and botanist (3). More commonly, H. perforatum is referred to as St. John‟s wort, a 

name given because of the traditional collection of its flower at the feast of St. John the 

Baptist on June 24
th

 (2). Because it is the dominant one in the market among all Hypericum 
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species, sometimes people call the entire Hypericum genus as St. John‟s wort and refer to H. 

perforatum as common St. John‟s wort (6). H. perforatum belongs to section Hypericum and 

is currently distributed around northern temperate regions all over the world (5). Being a 

perennial herb, H. perforatum is usually erect and branched distally, featuring 3-4 golden 

yellow pedals. Several sub-species were named under H. perforatum, including H. 

perforatum sub perforatum, H. songaricum, H. perforatum sub veronense, and H. 

foliosissimum etc., as described in detail by Robsons (3). Whether these subspecies would be 

as effective as the primitive ones in medicinal use has been examined in several studies, 

showing minor differences in anti-microbial and wound-healing properties (10-12).  

H. gentianoides is an annual species that belongs to section Brathys (3) . Sometimes 

referred to as Orange Grass, St. John‟s wort or gentian-leaved St. John‟s wort, it is native to 

North America (13). The main characteristics that help differentiate H. gentianoides from 

other species include its high-reduced linear leaves (13). Since it‟s a native species, earlier 

records about H. gentianoides are mainly about the use by Native Americans for conditions 

such as soreness, menstruation, snakebite and nose bleeding as described by Hamel et al (14). 

As with many other Hypericum species, the biological activities of H. gentianoides and its 

constituents have not yet been well studied. Section Brathys also includes species H. 

juniperinum and H. caracasanum, both native to high altitude areas in Central and South 

America. A recent review by Crockett et al. (2010) suggests these species are endowed with 

distinctive phytochemical properties under extreme climate conditions and worth further 

study (15).  
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H. balearicum probably received its name because of the Balearic Islands in the 

Mediterranean Sea, where it was first found (16). Being the type species of the entire section 

of Psorophytum,  H. balaericum shrub has dark green leaves and yellow flowers, as well as 

warty glands, which is why it is also called Warty St. John‟s wort (17). This species has been 

studied for its xanthone, flavonoids constituents (2, 16, 18).  

H. densiflorum is another species native to North America (2). As a member of section 

Myriandra, H. densiflorum has been shown to contain acylphloroglucinols that have anti-

oxidative, anti-inflammatory, and anti-cancer potential (19). H. forrestii of section Ascyreia 

is native to southwest China and Myanmar, where it is known as Forrest‟s tutsan (3). Three 

other species in section Ascyreia are H. patulum H. beanii and H. bellum, all native to China 

(2). H. patulum is known for its rich xanthone compounds which may possess various 

bioactivities, while H. beanii is rich in acylphloroglucinols with anti-microbial activity. (20-

24). Only very limited records regarding the chemical characteristics and bioactivity of H. 

bellum can be found in the literature (25).  

In summary, Hypericum species form a large family of plants that can be found in 

almost anywhere in the world. Most of the species are native to Europe and Asian, but a lot 

of them have been naturalized to the US. Given that only a very limited number of these 

species have been used for health promotion purposes and even less have been studied 

thoroughly, their potential as medicinal plants is far from fully realized.  
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Constituents in Hypericum species 

The genus Hypericum has been known for its rich content of various medicinal 

constituents, including naphthodianthrones, flavonoids, phloroglucinols, and caffeic acid 

derivatives. The presence and abundance of these compounds are determined by many 

factors, including species, part of plant, growth, and extraction. These different constituents 

could be independent, synergistic, or counteractive with regards to bioactivities associated 

with Hypericum.  

Among all components, naphthodianthrones, especially hypericins, are considered to be 

the characteristic components of Hypericum species, due to their high abundance compared 

to other plants, as well as their well-studied anti-depressive activity (26).  In fact, Hypericum 

is the only known genus that is rich in anthrones like hypericins. (27). In general, hypericin is 

the most common naphthodianthrone in Hypericum species, accompanied with 

pseudohypericin, protohypericin, and protopseudohypericin (28). Being light sensitive, 

protohypericin and protopseudohypericin can be converted to hypericin and pseudohypericin 

with light. Only 60% of the over 400 Hypericum species, all belonging to the more advanced 

sections, are known to contain hypericins (2). One reason why H. perforatum has been the 

only species widely used medicinally is because it is relatively rich in hypericin (26).  Within 

plants, hypericins are concentrated in glandular structures present in aerial parts (25). Flower 

buds usually contain the highest amount of hypericin, followed by flowers, capsules, and 

decayed flowers (29-30). The enrichment of hypericins apparently requires light, and can be 

stimulated under light exposure, as described by Kirakosyan et al. (31). In most 

circumstances, pseudohypericin co-exists with hypericin (25). The sole known exception is 
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that Kitanov et al. (2001) only found pseudohypericin, but no hypericin in H. formosissimum, 

a Taiwan native species (32). Hypericins are soluble in most organic solvents and is able to 

bind to serum albumin in the aqueous body fluids (33). Hypericins are highly light-sensitive. 

Once exposed to visible light, reactive oxygen species and semiquinones would be released 

from hypericins and account for the cytotoxicity associated with hypericins (34). Due to this 

reason, light exposure is an important concern when studying Hypericum materials. 

Flavonoids and biflavonoids accounted for around 2-4% of the dry mass of H. 

perforatum and can be found in other Hypericum species as well (7, 15, 35). The most 

dominant flavonoids in H. perforatum are quercetin and its glycosylated derivatives 

including quercetrin, isoquercetrin, rutin, and hyperoside (3). A representative biflavonoid in 

H. perforatum would be amentoflavone. Hypericum species vary widely regarding the 

abundance of  flavonoids and biflavonoids (18). Hypericum species are not among the most 

flavonoid-rich plants. However, based on the well-characterized bio-activity and metabolism 

of flavonoids and biflavonoids in the human body, these compounds can be contributors to 

Hypericum‟s bioactivity. On the other hand, the interaction between flavonoids, biflavonoids, 

and other constituents in Hypericum species could affect their bioavailability, metabolism, 

and bioactivity, which in turn requires further study in the context of a matrix of different 

compounds. 

Caffeic acid derivatives are phenolic acids widely distributed among plants, including 

several Hypericum species (36), (35). Anti-oxidative activity has been shown to correlate to 

the abundance of caffeic acid derivatives in Hypericum (36). Among these compounds, 
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chlorogenic acid is one of the most consumed polyphenols as it is abundant in coffee, fruits 

and vegetables (37). 

Phloroglucinols include compounds that bear phloroglucinol structure. Hyperforin, first 

found in acetone extracts of H. perforatum that have strong anti-microbial activity, is another 

characteristic compound of St. John‟s wort as its name implies (38). Unstable under light and 

oxygen, it is believed to be another major anti-depressant constituent in H. perforatum, 

besides hypericin (39). Extensive studies have been conducted to study their stability, 

resulting in interesting observation that these highly lipophilic compounds degrade in days in 

extracts made from dry materials but last for several months while extracted from fresh 

plants (40). The protective effects of other compounds in fresh H. perforatum material 

against hyperforin degradation again highlight the need to understand plant constituents as a 

whole. To the plants themselves, hyperforin, its derivatives and metabolites such as 

adhyperforin, occur mostly in the buds, flowers and capsules, possibly as a defense 

mechanism against pathogens (41). A group of less studied phloroglucinol components in 

Hypericum species are acylphloroglucinols, which can be found in significant amount in 

several species not including H. perforatum (19, 42-43). These compounds are polar 

polyketides and possess potent anti-microbial activities (44-45). Considered as analogues of 

hyperforin, whether they are formed naturally in the plant or during the extraction is still 

being studied (46). It has been reported that acylphloroglucinols have anti-inflammatory 

activity (43, 47).Therefore, species rich in these compounds, such as H. gentianoides, H. 

beanii, and H. densiflorum, can be anti-inflammatory as well. 
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Other than the constituents discussed above, potential bioactive compounds that were 

identified in Hypericum species also include xathones, choline, carotenoids, tannins, 

proanthocyanidins, anthraquinone, and terpenes (2-3, 21, 25, 36, 40, 48). In addition, there 

are many unknown constituents that may contribute to the medicinal efficacy of Hypericum 

materials. Studying the bioactivity of individual compounds and their collective efficacy in 

different preparations of Hypericum materials is crucial for validating their medicinal use and 

ensuring safety. It will also be possible to use the constituent and bioactivity relationship to 

predict the efficacy of different species based on their phytochemical profile. 

Absorption, distribution, metabolism, and excretion of Hypericum constituents 

Bioavailability of the proposed bioactive constituents of H. perforatum has been 

extensively studied. Currently, almost all H. perforatum products are taken orally, rendering 

bioavailability important for the evaluation of their health benefits in vivo (49). 

Bioavailability can be defined here as the proportion of active constituents being absorbed 

through the gastrointestinal tract. In general, bioavailability of a specific compound is 

determined by its own chemical properties, including its dose, chemical form, molecule size, 

solubility, and polarity, as well as the intestinal content, pH, and condition of gastrointestinal 

tract of the host (50). Because different constituents may employ a variety of mechanisms of 

absorption through the gastric-intestinal tract barrier, it is inevitable that the bioavailability of 

individual constituents by themselves differ from the bioavailability when they are in a 

mixture of compounds. Also, compounds absorbed through the intestinal tract often go 

through the first-past metabolism in the liver before circulating in the body (51). Metabolism 

of constituents could facilitate their availability, transform them into either active or inactive 



www.manaraa.com

15 

forms, or promote clearance. One major concern about the usage of H. perforatum lies in the 

fact that several components have been shown to alter the activity of hepatic cytochrome 

P450 and may cause potential toxicity when used with drugs like MAO inhibitors, 

contraceptives, and statins (52-54). Considering the dynamic pharmacokinetic process, the 

resulting biological effect of active compounds in vivo is not just determined by their 

property and bioavailability, but also by their post absorption metabolism and excretion, 

which could lead to the clearance of the constituents from the body and thus determine the 

duration of in vivo availability over time (55).  

Hypericin and its sister compound pseudohypericin, considered as major anti-depressant 

constituents in H. perforatum, have been studied thoroughly for their bioavailability (55-57). 

Using Caco-2 colon epithelial monolayers, Sattler et al. (1997) reported that 3.22 ± 0.13% of 

the hypericin administrated on the apical side of monolayer can be transported to the basal 

side after 5 hrs, with 23.81 ± 2.67 % bound to the monolayer (58). It was also noted that 

solubility was an issue for hypericin and cyclodextrins increased solubility of hypericin in the 

buffer, which facilitated its transportation. A human study conducted by Kerb et al. (1996) 

investigated the single-dose and steady-state pharmacokinetics of orally administrated 

hypericin and pseudohypericin using doses ranging from 300 to 1800 mg of H. perforatum 

extract in the form of supplement tablets (56). This comprehensive study unveiled that 

despite their similarity in structure, hypericin and pseudohypericin differed from each other 

in pharmacokinetics as the latter required shorter lag time after ingestion to be detectable in 

blood but was eliminated sooner. The 2 hr delay of detectable hypericin in the blood after 

consumption was confirmed by the administration of pure hypericin, indicating it was not 
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due to interference from other compounds in the extract. The area under curve (AUC) for 

blood hypericin concentration was higher than that for pseudohypericin, indicating lower 

bioavailability of the latter probably due to faster excretion. The peak blood concentrations at 

steady state for hypericin and pseudohypericin during steady dose treatment were recorded as 

~0.017 µM and ~0.016 µM respectively, while there was twice as much pseudohypericin as 

hypericin in the extract tablet used in the study. The absorption lag time of hypericin was 

noted by Kamuhabwa et al. (1999) using Caco-2 monolayer as well (59), in which the 

accumulation of hypericin in the epithelial monolayer peaked at 3 hr and transportation 

through the cells was delayed until the saturation of binding sites on the cell membrane or 

cytoplasm. A recent paper by Huntosova et al. (2010) pointed out the possible binding of 

hypericin to low density lipoprotein (LDL) that significantly magnified its uptake by U87 

glioma cells. This may allow in vivo bioactivity at a lower extracellular hypericin 

concentration than that required in vitro(60). In order to exert anti-depressive activity, 

hypericin should be able to cross the blood brain barrier (BBB) to reach the central nervous 

system (CNS). However, a limited number of publications indicated that hypericin, together 

with other potentially active constituents in Hypericum could barely overcome the BBB, 

casting doubts on whether or how these chemicals alter neurotransmitters as observed in 

animal studies. At the same time, it is possible that the metabolites and secondary derivatives 

of these compounds cross the BBB more efficiently and act on the CNS. Yet, this area still 

needs further investigation. The clearance of hypericin and pseudohypericin is unlikely 

through urine, but probably through bile excretion after glucuronic acid conjugation (56, 58). 

Liebes et al. (1991) characterized the clearance of hypericin in mice after 350 µg intravenous 

injection and showed an elimination half-life of 38.5 hr, similar to what Kerb et al. (1996) 
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reported in humans (56, 61). The organ distribution of hypericin in mice was revealed by 

Chung et al. (1994) to follow the order of uptake per gram of tissue: lung > spleen > liver > 

blood > kidney > heart > gut > tumor > stomach > skin > muscle > brain (62). By day 7, less 

than 10% of the injected hypericin was still in the mice.  

Flavonoids such as quercetin occur mostly as glycosides like rutin (quercetin-3-O-ß-D - 

rutinoside) in supplements and diet. Hydrolysis of glycosides by cecal microflora is required 

before their absorption, making them less absorbable compared to the aglycone counterpart 

(63). This suggests colon, instead of small intestine and stomach being the primary site of 

flavonoid absorption.  Crespy et al. (2002) claimed that only the aglycones can be absorbed 

in the stomach, while the glycosidated flavonoids such as rutin and isoquercetrin (Quercetin-

3-β-glucopyranoside) cannot (64). Recently, Reinboth et al. (2010) showed that glycosides 

were more bioavailable in dogs, in contrast to previous observations in humans, pigs, and 

rodents (65). Binding of flavonoids to the intestinal tissue, rather than transporting through 

the intestinal barrier, was noted by Carbonaro et al. (2005) (66). It is believed that those 

molecules bound to the intestine will be either excreted through the feces later or degraded 

by microbes and absorbed as metabolites (67). In fact, a human trial conducted by Gugler et 

al. (1975) found no quercetin or rutin in their original form in either plasma or urine after 

high dose oral administration; suggesting that metabolites of these compounds, such as 

phenyl acetic acid, might be the potentially active compounds in vivo (67-69). Although 

microbes in the gut could be important for releasing aglycones from glycosides, fast 

degradation could also result in more significant loss in the feces, and reduce the overall 

bioavailability (70).  
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Due to the fact the gut microflora varies dramatically among individuals and plays an 

important role in the absorption of flavonoids, relevant human studies often manifest large 

variability and reach different conclusions. For example, while Gugler et al. (1975) did not 

find traces of rutin in plasma with 50-65 mg/kg body weight dose, Ishii et al. (2001) reported 

detectable level of plasma rutin (~0.1 µM) and quercetin (~0.47 µM after enzyme hydrolysis)  

after orally administrating 500 mg of rutin (67, 71). Juergenliemk et al. (2003) characterized 

the permeability of a quercetin glycoside, miquelianin (quercetin 3-O-ß-D-

glucuronopyranoside) through the intestinal barrier as well as the BBB, suggesting that this 

compound was able to cross these barriers at ~2.0 pmol × min
-1

 × cm
-2

 and overcome the 

BBB with a permeability of ~1.3 × 10
-6

 cm/sec (72). Despite the absence of reports regarding 

altering the absorption of other constituents, flavonoids have been shown to inhibit 

cytochrome P450 2C9 (CYP2C9) in in vitro assays at ~2 µM concentration, and thus may 

potentially interfere with the metabolism of other compounds or drugs (73). Biflavones such 

as amentoflavone (I3, II8-biapigenin) exist in many Hypericum species (74). Although it has 

been shown that amentoflavone was detectable after oral consumption, its ability to 

overcome the BBB is low, rendering a plasma to brain ratio of 10:1 (55, 74-75). Gutmann et 

al. (2002) specifically studied the transport of amentoflavone across the BBB using porcine 

capillary endothelial cells and found it could passively diffuse into the cells while being 

actively back-transported out of cells through P-glycoprotein (76). In this study, increased 

uptake of amentoflavone was noted when it was added together with H. perforatum extract to 

the cells, suggesting possible synergy for amentoflavone absorption. 
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The bioavailability of caffeic acid derivatives has been characterized in several studies. 

In Hypericum, the major caffeic acid derivative is chlorogenic acid (5-caffeoylquinic acid) 

(77). Azuma et al. (2002) studied the absorption of caffeic acid and chlorogenic acid in rats 

after oral administration of 700 µmol/kg body weight of caffeic acid or chlorogenic acid and 

reported that, in contrast to the well-absorbed caffeic acid, chlorogenic acid was not 

transported into blood efficiently (78). Shortly after orally administering Flos Lonicerae 

extract containing 45 mg of chlorogenic acid to rabbits, Yang et al, (2004) detected a 

maximum concentration of ~2.3 µmol of chlorogenic acid in the blood, which gradually 

decreased (79). A study conducted by Gonthier et al. (2003) concluded that chlorogenic acid 

was primarily absorbed as gut microbial hydrolysis metabolites in rats, which may explain 

the absence of its intact form in rat blood (37). In contrast to what Azuma et al. (2002) found, 

Lafay et al. (2006) detected significant level of chlorogenic acid in the serum after feeding 

rats with a diet supplemented with chlorogenic acid and they attributed it to direct stomach 

absorption (80). In another study, Lafay et al. (2006) also found that only ~10% of all the 

chlorogenic acid perfused into rat small intestine went into the mesenteric vein, and resulted 

in a non-detectable level in the peripheral blood (81). Wang et al. (2006) developed a LC/MS 

method to simultaneously analyze the disposal of Mailuoning traditional Chinese medicine 

injection containing chlorogenic acid (8.5 mg/kg body weight) and caffeic acid (4.5 mg/kg 

body weight) in Sprague-Dawley rats, and demonstrated a two-compartment, first-order 

pharmacokinetic model for these two compounds (82). Comparatively, the authors concluded 

a faster tissue distribution of caffeic acid over chlorogenic acid, as indicated by a higher 

distribution volume. In humans, chlorogenic acid in green tea extract has been shown by 

Farah et al. (2008) to be readily bioavailable, with over 30% of the consumed cinnamic acid 
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moiety recovered in serum samples (83). A recent report from Renouf et al. (2010) confirmed 

the pharmacokinetics of ingested chlorogenic acid in humans, showing a peak serum 

concentration of ~30 µM at around 1-2 hrs post consumption (84). However, the form of 

chlorogenic acid absorbed and the sites of absorption require further investigation (85).  

Phloroglucinols in Hypericum species include hyperforin, a well-studied active 

constituent rich in Hypericum species, as well as some novel compounds such as uliginosin 

(44, 86). Although the bioavailability of hyperforin has been well-studied, little is known 

about other phloroglucinols regarding bioavailability (87-88). Therefore, it is necessary to 

validate their in vivo metabolism. 

The complicated composition of Hypericum extracts would inevitably affect the 

absorption, metabolism and clearance of its components. Therefore, evaluating the 

pharmacokinetics of more than one constituent in the same study would more accurately 

capture the overall dynamic of the bioavailability of all potential active compounds in 

Hypericum. In this aspect, the study conducted by Schulz et al. (2005) stood out among the 

few such comprehensive studies (57). The plasma levels of hypericin, pseudohypericin, 

hyperforin, quercetin, and isorhamnectin (3-methylquercetin) in 18 healthy male volunteers 

were evaluated simultaneously for 48 hrs after they orally ingested 612 mg dry H. 

perforatum extract. The results, similar to the studies discussed above, showed a peak plasma 

hypericin concentration of 3.14 ng/mL (6.2 nM) at 8.1 hrs, with a half life (T1/2)  of 23.8 hr. 

Plasma pseudohypericin reached the highest level of 8.5 ng/mL (16.3 nM) at 3 hrs, with T1/2  

= 25.4 hrs. Maximum quercetin concentration was 47.7 ng/mL (0.16 µM), recorded at 1.2 hrs 

after ingestion, with T1/2  = 5.5 hrs. These data again represent a general observation that 
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hyperforin, chlorogenic acid, and flavonoids in Hypericum extracts are more readily 

available after oral consumption, while naphthodianthrones like hypericin and 

pseudohypericin are less efficiently absorbed through the GI tract. All the human studies 

reported regarding the absorption and post-absorption metabolism of key Hypericum 

constituents have considerable variability, suggesting the significance of the host factors, 

possibly diet, gut microbial flora, and even genetic variations, in determining the fate of 

consumed compounds. 

In the future, more studies must be done to comprehensively study the tissue distribution 

of all potential bioactive constituents in Hypericum extracts simultaneously. This would 

allow us to understand better the pharmacokinetics of these compounds in the mixture 

context and help interpret in vitro and in vivo observations regarding their health benefits. 

Until then, it is important to realize that bioactivities of Hypericum identified using in vitro 

cell culture might not be found in vivo due to the low bioavailability or tissue distribution 

limitations. 

Adverse effect and drug interaction associated with H. perforatum use 

The popularity of H. perforatum for treating depression disorders calls for scrutiny on its 

safety, especially considering the scenario that it is being consumed by patients taking 

psychiatry drugs (89). 

In general, only a very small proportion of patients reported significant adverse effects 

after H. perforatum treatment, at a level comparable to that of placebo (90). While compared 

to conventional anti-depressant drugs, H. perforatum appeared to inflict less adverse drug 
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reaction. Common reports about side effects associated with H. perforatum were 

gastrointestinal symptoms, dizziness, restlessness, and skin discomfort. Two meta-analyses 

and a drug monitoring study in the 1990‟s reviewed a series of clinical trials on H. 

perforatum and found that patients tolerated it well and were affected by significantly fewer 

adverse effects compared to drugs such as tricyclic anti-depressants (TCAs) (91-93). The 

drug monitoring study included 3,250 European patients and reported an overall 2.4 % 

incidence of adverse drug effect. Common for treatments against depression, side effects in 

the form of mental state changes are hard to differentiate from original disease symptoms. 

Despite its encouraging safety profile by itself, H. perforatum interacts with other drugs 

when taken together and this combination would often cause severe side effects. To date, the 

following drugs have been shown to interact with H. perforatum, thus further caution is 

required when patients are considering taking H. perforatum: oral contraceptives; TCAs such 

as amytriptyline, imipramine, and metapramine; triptans such as naratriptan, rizatriptan, and 

sumatriptan; selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine, paroxetine, 

and setraline; anti-viral drugs including saquinavir, nelfinavir, and ritonavir (94). 

 H. perforatum interacts with these drugs primarily through altering CYP (P450) 

enzymes that are critical for drug metabolism (95-96). It has been estimated that over 80 % 

of drugs are metabolized by CYP3A, the variability of which contributed to the varied drug 

metabolism and efficacy among the population (97). Several components of H. perforatum 

extract have been shown to affect the expression or activity of CYP enzymes. Amentoflavone 

strongly inhibited CYP1A2, CYP2C9, and CYP3A4 in a competitive manner, while 

hyperforin and hypericin non-competitively inhibited CYP2D6, CYP2C9 and CYP3A4 (98). 
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In the same study, a commercial H. perforatum extract suppressed several CYPs dose-

dependently. Gutmann et al. (2006) thoroughly studied the impact of H. perforatum extract, 

hypericin, quercetrin, and hyperforin on LS 180 human colon cancer cells (99). Hyperforin 

and hypericin significantly increased the expression of multi-drug resistant transporter-1 

(MDR-1) and CYP3A4, while quercetrin elevated the expression of CYP3A4. The liver is 

the place where most drug metabolism happens, so studies using hepatocytes are valuable in 

assessing the impact of H. perforatum on metabolic enzymes. Hokkanen et al. (2011) 

recently reported that liver metabolism of hyperforin required CYP2C and CYP3A enzymes 

while it inhibited CYP2D6 and CYP3A4 potently with an IC50 of 7.3 µM and 4.4-9.6 µM 

respectively (100). Inhibition of CYP activity and promotion of CYP expression by 

hyperforin were confirmed by several studies, such as Dostalek et al. (2005) and Cantoni et 

al. (2003), who found inhibition of CYP2C6 and induction of hepatic CYP3A and CYP2D2 

(51, 101). Komoroski et al. (2005) tested the impact of hypericin and hyperforin on human 

hepatocytes obtained from human donors (102). Hyperforin, but not hypericin, inhibited 

CYP3A4 activity after 1 hr of acute treatment at 5 µM and 10 µM. Both hypericin and 

hyperforin were able to increase the expression of CYP3A4 and CYP2C9 with longer 

treatment duration. Different CYPs in various tissues could be altered by H. perforatum 

constituents in different ways. Therefore, the actual changes in drug metabolism by H. 

perforatum depend on the specific CYPs responsible for the drug‟s metabolism and whether 

it is the original drug molecule or its metabolite that has bioactivity. This complexity calls for 

case-by-case evaluation on whether H. perforatum will increase or decrease the availability 

and potency of certain drugs. 
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P-glycoprotein (P-gp), a membrane transporter mostly expressed in intestine and liver, 

mediates influx of molecules into cells and thus regulates cellular retention of drug molecules 

(103). Tian et al. (2005) used LS180 and LLC-Ga5-CO150 human colon cancer cells to 

investigate the effects of H. perforatum extract, hyperforin, and hypericin on P-gp activity 

(104). Hyperforin at 1 µM and the extract at 75µg/mL increased P-gp expression, which 

could potentially decrease drug availability. CYP3A and P-gp are regulated in common 

mechanisms in many cases, but Matheny et al. (2004)  demonstrated that H. perforatum 

extract up-regulated P-gp through a pathway that did not involve their shared regulator, the 

human pregnane X receptor (PXR) (105). Induction of P-gp by St. John‟s wort extract was 

also characterized using LS180 colon cancer cells (106). Under the up-regulation of both 

CYP3A and P-gp, underexposure to certain drugs when co-administrated with H. perforatum 

extract was reported (107). 

The enrichment of photosensitive components such as hypericin, pseudohypericin, and 

hyperforin in H. perforatum extract could be associated with rare adverse effects reported by 

some H. perforatum users. Due to the relatively low bioavailability of hypericin and 

pseudohypericin, it is difficult to attribute skin blisters a very few patients developed after H. 

perforatum treatment to these compounds. Schempp et al. (2003) gave healthy volunteers a 

single dose of H. perforatum extract containing 5.4 (n=8) or 10.8 µg (n=4) of hypericin and 

found increased pigmentation induced by UVB and erythema under visible light compared to 

the level before medication (108). The authors also noted that the maximum serum hypericin 

level (around 40-60 ng/mL) was considerably lower than the minimum level required to 

induce phototoxicity in cell culture (>100 ng/mL) (109). The same group also studied the 
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photosensitizing effect of topically applied H. perforatum extract (110). Sixteen volunteers 

had H. perforatum oil applied to their forearm and increased photosensitivity was observed, 

but without apparent toxicity or tissue damage. Clinical trials aimed to study the anti-HIV 

activity of hypericin recorded photosensitivity side effects, which became more common and 

severe when hypericin dose increased from 0.05 mg/kg body weight (14% of patients had 

minor symptoms) to 0.16 mg/kg daily (two patients dropped out due to intolerable 

symptoms). Such adverse effects became even worse when the dose increased to 0.25 mg/kg 

2-3 times per week (over 50% of patients dropped out due to discomfort) (89, 111). These 

studies also showed reduced phototoxicity among patients receiving H. perforatum extract 

instead of pure hypericin, indicating a potential decrease in toxicity due to interactions 

between constituents. 

Other than phototoxicity, studies about  the acute, long term, immunological, 

carcinogenic, and reproductive toxicity of H. perforatum are very limited, without finding 

definitive evidence of toxicity in these aspects (112).  In summary, the main concern about 

the safety of consuming H. perforatum extract and its constituents lies in phototoxicity with 

high dose and potential drug interaction. Drug interaction of H. perforatum products still 

needs further studies using a wide variety of plant material or pure compound preparations to 

overcome discrepancies among observations in different experimental models.  Considering 

the complicated interaction between different Hypericum components, taking the whole 

extract as supplement could potentially offer more safety as compared to single compounds, 

while using a pure compound that is well characterized for therapeutic purposes such as 

bladder cancer photodynamic therapy might be preferred clinically. Whether other 
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Hypericum species are similar to H. perforatum extract in toxicity remains largely 

unanswered. More animal studies and possibly epidemiological investigations will solidify 

the safety profile of Hypericum. Before that, Hypericum species should be considered 

generally safe at this moment. However, to ensure the conclusions of in vitro and in vivo 

studies using Hypericum materials are not confounded, testing their toxicity at the maximum 

studied dose is still required to validate any bioactivity and avoid toxic doses.  

Influenza infection and associated host inflammatory response 

Influenza has been a major public health burden for over a century, causing more than 

30,000 deaths a year in the United States since 1979 and infects roughly 10-20 % of the 

general population (113).  

 Commonly called flu, the infectious disease is caused by influenza viruses, which are 

RNA viruses belonging to the Orthomyxoviridae family(114). Influenza viruses usually have 

zoonotic potential, which in turn could make them escape established population immunity 

against select strains and cause pandemic disease (115). In general influenza viruses make up 

three out of five genera of the Orthomyxoviridae family, namely Influenzavirus A, 

Influenzavirus B, and  Influenzavirus C (116). Type A and B influenza viruses are 

responsible for seasonal flu epidemic spread. Influenza A can be classified into subtypes 

according to their hemagglutinin (HA or H, 1~16) and the neuraminidase (NA or N, 1~9) 

surface protein serotypes (117). In humans, the four most common and lethal subtypes of 

influenza A virus out of a total of ten confirmed human subtypes, are listed with the 

pandemic associated with them in Table 1 (117). Influenza B virus, in contrast to influenza 

A, is almost exclusively seen in human, with rare reports about its being found in seal and 

http://en.wikipedia.org/wiki/Orthomyxoviridae
http://en.wikipedia.org/wiki/Orthomyxoviridae
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ferrets (117-119). Influenza C is less common than the other two types and mostly causes 

illness in children (120). 

 All three types of influenza viruses share a similar and simple structure that is often 

near spherical and comprised of an envelope of glycoproteins and a core (125). The core of 

influenza viruses has the viral genome which in most circumstances is 13.5 kb in total, 

comprised of several fragments of negative-strain RNA (126). Each of the eight RNA 

fragments in the viral core would carry the code for one or two proteins (127). Extremely 

simple, there are only 11 proteins that a typical influenza A viral genome encodes: HA, NA, 

non-structual protein (NS)1, NS2, nucleoprotein (NP), matrix protein (M)1, M2, polymerase 

(PA), polymerase basic (PB1), PB2, and PB2-F2 (128). Despite the simple composition, 

antigenic shifting and drifting allow a dynamic reorganization of the surface antigen of 

influenza particles and pose a challenge to vaccination during each flu season (129). 

Table 1. Influenza A subtypes and associated major pandemics 

Subtypes Pandemics and global mortality  

H1N1 1918 Spanish flu (50 to 100 million deaths);  

2009 Swine flu (18138 deaths as of May 2010) 

H2N2 1956 Asian flu (2 million deaths) 

H3N2 1968 Hong Kong flu (2,500 deaths in Hong Kong and 33,800 in the US) 

H5N1 2004 Bird flu (303 deaths out of 510 human cases) 

References: (121-124) 
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 Influenza viruses are spread by direct host contact, either through aerosol, or hand to 

eye/nose/mouth (130). The importance of surface to hand to mucosa transmission of 

influenza viruses has been increasingly appreciated, as hand washing has been shown to be 

the single most effective way to prevent influenza infection. Without attaching to a host, 

virus can survive on various surfaces for durations ranging from minutes to weeks, 

depending on the environment (131). Once infected, human hosts usually shed viral particles 

from one day before the onset of symptoms until 6-7 days later (130). Once reaching 

infection sites through the nose, mouth, or eyes, influenza virus binds to the surface of 

epithelial cells through HA recognition of sialic acid, while NA cleaves sialic acids of 

cellular receptors to prepare potential release of progeny particles and infect adjacent cells 

(132). Subsequently, the cleavage of HA ensues, which facilitates viral particle into the cell 

through endocytosis and thus directly determines virulence of the virus (133). Once inside 

the cells, viral particles would activate M2 channel to acidify their core genome in order to 

start the reverse-transcription process and replicate themselves (133). Progeny influenza 

virus will protrude out of the host cell membrane and release into the extracellular space 

when NA cleaves cell sialic acids. 

Typical symptoms during influenza include fever, coughing, body aches, headache, 

fatigue, and nasal congestion (114). Most of the symptoms result from immune response 

against the viruses, instead of direct tissue damage (134). But some acute phase symptoms 

and signs are indeed caused by epithelial cell damage and apoptosis, obstructed airway, and 

hyperactivity of the respiratory system (135-138). Uncontrolled inflammatory response 

against influenza, especially when viral clearance is not efficient, can cause severe 
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respiratory distress and is thought to be a major contributor of the high mortality rate during 

H1N1 1918 Spanish flu pandemic and H5N1 Hong Kong flu season (139). It is therefore 

possible that anti-inflammatory supplements such as H. perforatum could help reduce 

inflammation and improve prognosis. Upon infection, influenza viruses trigger host innate 

and adaptive immune responses that contribute to the pathogenesis of influenza while 

attempting to resolve the viral infection. Mucosal immunity is traditionally considered as the 

first line of defense against influenza, but more and more attention has been drawn to the 

cells first infected by influenza viruses, the epithelial cells, that initiate recruitment of 

immune cells (140). Different strains of influenza viruses target different parts of the 

respiratory tract, with more virulent strains often invades as deep as the lung while the others 

attach to upper respiratory tract (130). When the invasion of viral particles is recognized by 

epithelial cells through intracellular toll-like receptor 3 (TLR3) the anti-viral response begins 

(141). Epithelial cells release two major types of interferon (IFN) to promote anti-viral 

activity. Type I IFNs such as IFN-α and IFN-β induce the expression of genes that either 

suppress viral replication or degrade viral RNA (142). Type III IFN like IFN-λ provides 

additional protection against virus, although not as potent as type I IFNs (143). As mentioned 

before, pro-inflammatory cytokines and chemokines are important contributors to the 

pathogenesis of influenza and clearance of virus. Epithelial cells release the initial wave of 

cytokines and chemokines, including IFN- β, TNF-α, interleukin (IL)-1, IL-6, IL-8, 

macrophage chemotactic proteins (MCPs), interferon-γ inducible protein 10 kd (IP-10), etc. 

These cytokines and chemokines subsequently recruit immune cells and activate a systematic 

inflammatory response (144-145). The secretion of theses cytokines are highly dynamic over 

the course of infection and depend on factors such as the virulence of virus and host immune 
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response. More virulent strains often induce a higher amount of cytokines and could 

potentially lead to highly dangerous „cytokine storm‟ (146). Macrophages are one source of 

the excessively secreted cytokines and chemokines. Thus, inhibition of macrophage 

production of inflammatory mediators by Hypericum extracts may alleviate the damage to 

respiratory system under this extremely hazardous scenario.  

Innate immune response against influenza infection involves granulocytes, dendritic 

cells (DC), macrophages, and natural killer cells (NK) (146). The innate immune cells 

recognize viral particles through endosomal TLR7 and cytosolic retinoid acid inducible gene-

1(RIG-1) (147). Macrophages and DCs will secrete pro-inflammatory cytokines and IFNs to 

suppress viral replication and prime adaptive immune cells against infection, while NK cells 

directly kill infected cells and contain viral spread in the early phase (148-149).  

Alveolar macrophages are major antigen presenting cells (APC) in the airway during 

normal state along with DCs and regulate immune response to maintain homeostasis (150). 

During influenza infection, these macrophages are activated by cytokines and become 

phagocytic as well as pro-inflammatory (151). Another set of macrophages in the lung during 

influenza infection are monocyte-derived pro-inflammatory macrophages that exudate from 

the circulation system under the influence of chemokines. These macrophages release 

inflammatory mediators such as nitric oxide (NO) and TNF-α (152). Evidence also suggested 

that these macrophages could become anti-inflammatory at the later phase which could 

contain inflammatory tissue damage and help recovery (153).  

Dendritic cells are both important for innate and adaptive immune response, as they 

secrete a wide variety of inflammatory cytokines including anti-viral IFNs, and present 
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antigen to T cells through major histocompatibility complex (MHC)-II. Influenza infection 

increases the number of alveolar DCs (aDCs), as well as induces the recruitment of 

inflammatory plasmacytoid DCs (pDCs) into the lung (154). Activated DCs can migrate to 

lymph nodes under the binding of CCR7 to ligands CCL19 and CCL2. In the lymph nodes, 

DCs prime CD8+ as well as CD4+ T cells to initiate adaptive immune response (155).  

NK cells have been recently shown to be important for the defense against influenza 

infection, especially through NKp46 receptor that binds HA of influenza viruses (156). They 

are required for cytotoxic T cell (CTL) response against influenza and mediate antibody-

dependent cell-mediated cytotoxic (ADCC) response for virus clearance (157). The role of 

neutrophils in influenza infection is not yet fully understood. Although they are shown to be 

required for successful activation of adaptive immune cells, whether they directly contribute 

to viral clearance or tissue damage remains unclear (158-160).  

All these innate immune cells interact with each other and with epithelial cells during 

influenza infection. They not only promote the initial inflammation that recruits immune 

cells and regulates viral clearance, but more importantly, they prime the subsequent adaptive 

immune response that ultimately resolves the disease and probably facilitates tissue 

reconstruction after the infection. There is a dilemma between inflammation resolution and 

inefficient infection resolution when it comes to anti-inflammatory intervention. One 

example is dietary fish oil that is found to inhibit inflammatory response during influenza 

infection but also cause impaired viral clearance and higher mortality in mice (161). 

Adaptive immune response is predominantly of the Th1 type during influenza infection, 

which promotes IL-2 and IFN-γ, resulting in CD8+ CTL activation and macrophage 
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phagocytosis (162). Macrophages and DCs digest pathogens or pathogen-infected cells and 

then present influenza antigens to CD4+ T cells, which in turn activate CTL response. CTLs 

are responsible for the majority of viral clearance through lysis of target cells (163). B cells 

are also activated by APCs and secrete IgG and IgA against influenza that can neutralize 

viral particles or mediate ADCC (164). Current vaccination against seasonal flu depends on 

antibodies from B cells stimulated by inactivated virus. However, rapid antigen drifting and 

shifting have rendered such strategy not as efficient and reliable as desired (165). On the 

other hand, cross-type immunity has been observed in T cells, which responded to both 

H3N2 and H1N1 viruses (165). Therefore, a future direction for flu vaccine development is 

cytotoxic T cell-based immunization (166). 

Epithelial linings, innate and adaptive immune system all contribute to host defense 

against influenza viruses. Although inflammation and cytotoxic response are required to 

resolve infection, they are also associated with tissue damage and hazardous „cytokine storm‟ 

featuring high levels of TNF-α, IL-6, MCP-1, and IFN-γ that take part in pathogenesis. At the 

same time, influenza viruses infect various immune cells and compromise their function, or 

actively alter their antigenic characteristics, in order to facilitate their own survival and 

replication. Maintaining a balance during this battle is critical for infection resolution without 

inflicting undue damage to the host. Dietary supplements such as H. perforatum‟s immune-

regulatory activity could impact the balance between inflammation, viral clearance, and 

tissue damage. But whether the impact is positive or not is a problem to be addressed. 
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Anti-bacterial and anti-viral properties of Hypericum species and their constituents 

Records about the anti-microbial activity of Hypericum species could be dated back to 

Cherokee medicine (14). While H. perforatum is almost the sole species studied for anti-

depressive and anti-cancer activity, other less known species have been assessed for anti-

bacterial and anti-viral properties.  

Phloroglucinols such as hyperforin are potent anti-bacterial agents that exist in many 

plants as defense chemicals, (38, 86). Jayasuriya et al. (1989) studied hyperforin rich H. 

drummondii hexane extract and found strong inhibitory activity on Gram positive 

Staphylococcus aureus, Bacillus subtilis, and the bacterium Mycobacterium smegmatis (167). 

A study aiming to determine the anti-bacterial spectrum of H. hookerianum methanol extract 

found significant anti-microbial activity against six Gram positive and six Gram negative 

bacteria by a methanol extract at 400 µg/mL (168). Saddiqe et al. (2010) claimed in a recent 

review that stronger inhibition by Hypericum species was seen on Gram positive than Gram 

negative bacteria (169). Cecchini et al. (2007) compared the anti-microbial activity of seven 

Hypericum species with habitats in central Italy and found hypericin and hyperforin being the 

most important, but not the only active anti-microbial components (11). Pistelli et al. (2000) 

studied the anti-bacterial property of H. hircinum extract and fractions containing close-to-

pure constituents (170). While the methanolic extract possessed the strongest activity against 

Staphylococcus aureus, pure components were not active by themselves, suggesting strong 

synergistic effects. Novel phloroglucinols are being discovered in Hypericum species and 

found to have strong anti-microbial activity. Rocha et al. (1995) isolated japonicine A, 

uliginosin A and isouliginosin B and hyperbrasiol A from H. brasiliense and determined 
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these phloroglucinols being anti-bacterial (44). Gibbons et al. (2005) isolated and 

characterized a novel acylphloroglucinols from H. foliosum extract and tested it against 

Staphylococcus aureus (171). The acylphloroglucinols compound, 1, 3, 5-trihydroxy-6-[2''', 

3'''-epoxy-3'''-methyl-butyl]-2-[2''-methyl-butanoyl]-4-[3'-methyl-2''-butenyl]-benzene, is a 

trinitrobenzene derivative and has been found with a minimum inhibitory value of 16-32 

µg/mL. 

In addition to phloroglucinols, naphthodianthrones and perhaps flavonoids also 

contribute to anti-bacterial activity (169). Photodynamic therapy using hypericin was shown 

to be effective against Propionibacterium acnes (172). Engelhardt et al. (2010) used 100 µM 

of hypericin as photosensitizer against Staphylococcus aureus and found significant 

photobactericidal efficacy (173). H. perforatum subsp. angustifolium was found to contain 

more hypericin and flavonoids compared to H. perforatum subsp. perforatum, which Males 

et al. (2006) attributed to its stronger anti-microbial activity (174). The major drawback of 

these studies is the relatively high dose used, which is unlikely to be reached in vivo, unless it 

is administrated topically on the site of infection. 

Anti-viral activity of Hypericum species, particularly their hypericin content, has been 

studied extensively since late 1980‟s when Meruelo et al. (1988) published the first paper 

describing the anti-viral properties of hypericin and pseudohypericin (175). BALB/c mice 

infected with highly virulent Friend leukemia virus were prevented from developing typical 

rapid splenomegaly and acute erythroleukemia when injected with 50 µg hypericin or 

pseudohypericin at the same time as infection. Orally or intraperitoneally administrated 

hypericin and pseudohypericin were also effective in fending off the retrovirus. Hypericin 



www.manaraa.com

35 

and pseudohypericin also dose-dependently inhibited radiation leukemia virus antigen in 

mice. With no apparent effect on viral nucleotide or protein transcription and translation 

being observed, the authors speculated that the anti-viral mechanism was direct interference 

of virus infection and shedding, or inactivation of virus, or disruption of virus lipid 

membrane. Takahashi et al. (1989) proposed that protein kinase C (PKC) inhibition could be 

an underlying mechanism for hypericin‟s anti-viral activity (176). Andersen et al. (1991) 

tested the anti-viral activity of hypericin against vesicular stomatitis virus (VSV), herpes 

simplex virus (HSV) types 1 and 2, parainfluenza virus, and vaccinia virus and found 

significant reduction in infectivity at less than 1 µg/mL treatment concentration (177). 

Hudson et al. (1991) noted that light-activation dramatically magnified hypericin‟s virucidal 

activity against murine cytomegalovirus (MCMV), Sindbis virus, and human 

immunodeficiency virus (HIV) type 1, which agreed with what Carpenter et al. (1991) found 

in equine infectious anemia virus (178-179). Besides possible PKC inhibition as discussed 

above, hypericin‟s photosensitized inhibitory activity against virus was also suggested to be 

carried out through oxygen-dependent mechanisms, namely Type I and II photosensitizing 

mechanisms (180-181). This is why the maximum anti-viral potency of hypericin can be 

achieved with sufficient light exposure and oxygen supply. 

Hypericin‟s anti-viral property once made it a candidate natural compound for anti-HIV 

treatment and as potential blood sterilizer (182). In 1990, Schinazi et al. first demonstrated 

that hypericin potently inactivated HIV in human lymphocytes (183). Degar et al. (1992) 

investigated the mechanism through which hypericin inactivated HIV and found reduced p24 

protein mobility and interrupted virus uncoating, which led to impaired viral gene reserve-
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transcription (184). Clinical trials have been done to study whether hypericin and/or 

Hypericum extracts could help patients with HIV infection. Steinbeck-Klose et al. (1993) 

reported that 18 HIV patients received 2 × 2 mL weekly hypericin injection plus 3 × 2 daily 

H. perforatum extract tablets over a course of 40 months (185). Sixteen patients with good 

adherence experienced stable levels of or even increased levels of CD4+ T cell counts and 

improvement in CD4/CD8 ratio. Blood cell composition of these patients remained stable 

and only 2 of them had opportunistic infection over the 40 months period, which was 

considerably lower than the average incidence among patients under similar conditions. 

These exciting findings, however, were not replicated in the phase I clinical trial conducted 

by Gulick et al. (1999) on 30 HIV patients (186). Patients in this study received hypericin i. v. 

injection at 0.25 mg/kg body weight twice a week, or 0.5 mg/kg twice a week, or 0.25 mg/kg 

three times per week, or orally 0.5 mg/kg per day. No beneficial effect was found, though the 

authors acknowledged that the short treatment regimen (8 weeks), small number of 

participants (30 patients for the entire study), and possibly lower than required dose were the 

potential reasons for insignificant results. Severe phototoxicity was reported in this study as 

well, which caused several early drop-outs. Lavie et al. (1995) proposed using hypericin as a 

safe blood virus inactivating agent based on its strong inhibitory activity on blood-borne 

virus and low toxicity to red blood cells (187). However, conclusive clinical evidence has yet 

to be found to support the in vivo efficacy of hypericin and H. perforatum against HIV. More 

long term clinical studies are needed to further explore the benefit of hypericin on HIV 

patients. At the same time, possible interactions between H. perforatum compounds and anti-

viral drugs would pose a challenge for such studies and probably is one of the reasons why 

the once-popular enthusiasm for hypericin as anti-HIV treatment has been fading. 
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Reverse-transcribed hepatitis virus B and C (HBV and HCV), have been found to be 

inhibited by hypericin in vitro (188-189). However, in a clinical trial reported by Jacobson et 

al. (2001), hypericin consumed orally at up to 0.05 mg/kg body weight did not change 

plasma HCV DNA level after an 8 week regimen, while inflicting significant phototoxic 

side-effects in more than half of the patients (189). Once again, the use of pure hypericin 

seemed more likely to cause phototoxicity than H. perforatum extract. 

Flavonoids and caffeic acid derivatives were found to be virulcidal at relatively high 

concentrations (often over 100 µM), which is not likely to contribute independently to 

Hypericum‟s anti-viral activity (190-192).  Some recent reports showed that isoquercetrin in 

H. perforatum extract could inhibit H1N1 influenza virus replication in MDCK cells at 2 µM 

and relieved bronchitis and reduced viral titer among mice infected with the virus (193). Liu 

et al. (2008) also found 10 g/kg body weight of H. japonicum extract intra-nasal treatment 

resolved mouse lung pneumonia induced by H3N2 influenza virus (194). 

To summarize, most observations of Hypericum‟s anti-viral activity were acquired from 

in vitro studies and a limited number of animal studies, while human clinical trials often 

showed little or no significant effect. Hypericin is the most prominent anti-viral constituent in 

Hypericum, but its efficacy in vivo through injection has been marred by phototoxicity. A 

possible solution to this issue would be to administer the whole extract orally, instead of 

injecting pure hypericin. However, hypericin‟s low bioavailability could render a sub-

therapeutic concentration after consumption and compromise the outcome. Before these 

obstacles are overcome, it is difficult to translate Hypericum‟s in vitro anti-viral property into 

clinical anti-viral therapy. Nevertheless, the anti-microbial and anti-inflammatory activities 
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associated with Hypericum constituents provide evidence of therapeutic potential against 

infection if phototoxicity can be mitigated and bioavailability barriers can be overcome. 

Inflammatory signal transduction of TLR, MAPK, JAK-STAT, and NOD pathways 

Inflammatory response requires the participation of various cell types including stromal, 

epithelial, and immune cells. These cells release cytokines, chemokines, inflammatory 

mediators, and lipid signal molecules (195). Despite the wide variety of cells contributing to 

inflammation, the intracellular regulatory and signaling pathways are shared by many. 

Among them are the TLR, JAK-STAT, MAPK, and NOD pathways (196). This section will 

review the signaling and regulation of these pathways during inflammation, with more details 

regarding macrophages and epithelial cells. 

TLRs, the most studied group of pattern recognition receptors (PRRs), recognize 

pathogens or stimuli that carry pathogen associated molecular patterns (PAMPs) (196). To 

date, ten human TLRs (TLR1-10) and twelve mouse TLRs (TLR1-9, 11-13) have been 

described and characterized (197). Being transmembrane glycoprotein receptors, TLRs have 

an antigen sensing motif and intracellular signaling motif that depend on two major kinds of 

adaptors: myeloid differentiation primary response gene 88 (MyD88), which activates NF-κB, 

mitogen-activated protein kinase (MAPK) and activator protein 1 (AP-1), and TIR (toll-

interleukin 1-resistance)-domain-containing adapter-inducing interferon-β (TRIF) that 

activates type I IFNs (198). TLR4 is important for macrophage recognition of Gram-negative 

bacteria through their lipopolysaccharides (LPS) (199). LPS stimulation in macrophages 

usually activates the expression of pro-inflammatory cytokines such as TNF-α, IL-6, IFN-γ, 

and the release of inflammatory mediator prostaglandin E2 (PGE2) and nitric oxide (NO), the 
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combination of which called M1 response or classical activation of macrophage. However, 

under circumstances such as chronic hepatitis and helminth infection, macrophages can be 

tuned to alternatively-activated M2 response and produce arginase and fibrogenic enzymes 

(200). TLR4 activated by LPS would initiate the MAPK pathways that lead to the activation 

of cytosolic phospholipase A2 (cPLA2) (201). Phospholipids in macrophages are then turned 

into arachidonic acid by cPLA2 and eventually used for PGE2 synthesis catalyzed by COX-1 

and COX-2. PGE2 promotes cell proliferation, migration, adhesion, and muscle relaxation, 

activates pain receptor, dilates vascular vessels, and causes fever (202). NO is another 

important molecule released during inflammation predominantly by M1 macrophages that 

express inducible nitric oxide synthase (iNOS) (203). NO is important in the clearance of 

infection and regulation of immune response, but also considered the culprit for reactive 

nitrogen species that can cause significant tissue damage (204). PGE2 and NO regulation 

apparently share certain pathways.  For example, a study by Pindado et al. (2007) 

demonstrated that NO synthesis was partially dependent on cPLA2 and COX-2 expression 

(205). Besides TLR4, TLR3, which is important for macrophage and epithelial defense 

against influenza virus infection, can activate iNOS and COX-2 synthesis through NF-κB 

and MAPK (205). 

The MAPK pathways are involved in numerous cellular functions, including 

inflammatory response (206). The phosphorylation cascade leads to post-transcriptional 

activation of transcription factors AP-1 and cAMP response element-binding (CREB) (207). 

The MAPK pathways coordinate and synergize with TLRs in the promotion and eventually 

the resolution of inflammation. Three major classes of MAPK involved in immune response 
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are p38 kinase, ERK, and JNK (208). Different stimulations have been shown to activate one 

MAPK family over the others, which results in different cytokine profiles (207). In general, 

the p38 pathway in macrophages promotes the release of pro-inflammatory responses such as 

IL-6, IL-12, TNF-α, NO and PGE2, while ERK mostly increases IL-6 and TNF-α, and JNK 

favors increasing anti-inflammatory IL-10. 

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) 

pathway is responsible for transmitting signals from a myriad of cytokine and hormone 

receptors (209). Unlike the MAPK pathways, only a few principle components make up 

JAK/STAT pathway and form a relatively simple mechanic cascade (210). Binding of 

ligands to receptors initiates the multimerization of JAK tyrosine kinases, which activate 

latent transcription factors STATs through phosphorylation and result in the activation of 

gene expression (211). Negative regulation of the JAK/STAT pathway is carried out through 

suppressor of cytokine signaling (SOCS) proteins, whose transcription is controlled by 

STATs (212). Although SOCSs are important to contain inflammation, they are also 

manipulated by pathogens such as influenza viruses and hepatitis viruses to allow them to 

escape immune response (213-214). During inflammation, IFNs activate IFN-R and 

associated STAT1 while IL-6 binds to IL-6R, which activates STAT3 (215). Type I IFNs 

inhibit virus replication through the JAK-STAT pathway. SOCS3 elevation may lead to the 

dissociation between IFN receptor stimulation and intracellular signaling cascade and results 

in failure in resolving the viral infection. Therefore, activating SOCS3 expression by agents 

such as the 4 compounds in H. perforatum extract may inhibit inflammation induced by LPS 

in vitro, but can also interrupt adequate clearance of pathogens in vivo and cause prolonged 
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inflammation due to persistent infection. Anti-inflammatory IL-10 can induce the expression 

of SOCS3 and thus inhibit inflammatory signaling in immune cells (216). The JAK-STAT 

pathway is a common mechanism for not just immune signaling, but also metabolic 

regulatory mechanisms. It has been shown to play an important role in the development of 

metabolic dysregulation such as insulin resistance under chronic inflammatory conditions 

such as obesity (217). 

Nucleotide oligomerization domain (NOD) receptors are endoplasmic PPRs that 

recognize PAMPs (218). NODs belong to a bigger family of so called NOD-like receptors 

(NLR) that feature the same characteristic domain structure comprised of an N-terminal 

Pyrin domain (PYD), a caspase recruit domain (CARD), a NOD domain or NACHT, and a 

C-terminal leucine rich repeat (LRR) similar to the TLRs. NOD1 and NOD2 are the first 

NLRs with their immuno-regulatory function being described, which is carried out through 

MAPK and NF-κB (219). The most well studied function of NLRs is their activation of 

caspase-1 in the context of the inflammasome, which cleaves pro-IL-1β into functional IL-1β 

(220). Besides that, NLRs have been demonstrated to interact with other cellular signaling 

pathways to coordinate immune response, which makes them potential molecular targets for 

anti-inflammatory therapy. 

Synergy and mutual regulation between different signaling pathways are the keys to 

maintain potent immune defense while avoiding uncontained inflammatory damage to the 

host (198). Upon the recognition of antigens or danger signals, TLRs and NLRs are the first 

receptors to be activated and they share the common downstream cascades of NF-κB and 

MAPK. Takahashi et al. (2006) used RAW 264.7 macrophages to investigate the time line of 
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NOD and TLR4 signaling and found NOD1 and NOD2 were up-regulated by TLR4 and then 

induced NF-κB activation, suggesting TLR4 being more important in the early phase of 

immune activation (221). Once both signaling pathways are activated, TLR4 and NLRs are 

mostly synergistic in activation the transcription of pro-inflammatory cytokines and 

mediators (222). Besides their additive effect on NF-κB and MAPK activation, the two 

pathways cooperate sequentially in IL-1β production, as pro-IL-1β production induced by 

TLR activation requires the NLR-mediated inflammasome cleavage to become functional IL-

1β (196). In a recent article, Benko et al. (2010) described their findings regarding the anti-

TLR activity of NLRC5 receptor, which is the first such report (223). JAK-STAT interacts 

with TLR signaling through SOCS, which can inhibit both MAPK and NF-κB activation, or 

interfere with TLR co-activating receptors such as IFN-γR (224-225). Although simple in 

theory, the interaction between SOCS and TLR signaling looked more startling in reality.  

For example, while IL-10 exerts anti-inflammatory effect on macrophages through SOCS3, 

SOCS3 also promotes TLR4 signaling by inhibiting an endogenous TLR inhibitory signal 

TGF-β/Smad3 (226-227). Clear evidence demonstrating the sophisticated nature of the JAK-

STAT/TLR interaction was found in the observation that IL-6, usually a pro-inflammatory 

cytokine, became anti-inflammatory in macrophages devoid of SOCS3 (228). The 

phosphorylation of STAT1 has been shown to require the participation of p38 MAPK during 

LPS induction (209). On the other hand, expression of SOCS and STAT can be activated by 

NF-κB through TLR activation (210). A simplified diagram showing the interactions 

between the different signaling pathways discussed above can be seen in Figure 1. 
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Previously, Hammer et al. (2010) employed microarray tools to investigate the 

transcription of different signaling molecules in macrophages under treatment of H. 

perforatum constituents (229). The JAK-STAT, MAPK, and TLR signaling pathways were 

significantly affected, suggesting multiple mechanisms involved in the anti-inflammatory 

potential of H. perforatum. Knockdown or over-expression of candidate regulators such as 

SOCS3 would unveil the molecular targets of H. perforatum constituents. The NOD 

signaling pathways are relatively less-understood, but recent advances in this area would 

allow us to revisit the data and investigate whether NOD was involved in the anti-

inflammatory activity of H. perforatum constituents.  

 

Figure 1. Cross-talking between inflammation pathways 

Solid arrows represent activation, dash arrows represent inhibition, and dual arrows represent 

mutual activation 
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In summary, different signal pathways are dynamically regulated during immune 

response. They provide feedback controls and coordinate with each other to maintain 

immunological homeostasis that is critical for both the resolution of infection and to avoid 

detrimental damage to the host or autoimmune disorders. The complexity of this immune 

regulatory network creates challenges to studying the anti-inflammatory potential of 

bioactive compounds, as the decrease of one inflammatory mediator is often accompanied by 

the increase of another. Therefore, evaluating a wide panel of inflammatory mediators, 

cytokines, chemokines, and signaling molecules would facilitate a comprehensive 

understanding of the immune-regulatory compounds of interest. Also, findings in in vitro cell 

culture models would require verification in in vivo studies. 

Anti-inflammatory properties of Hypericum species and their constituents 

Most of the previous studies on Hypericum species have focused on their chemical 

constituents, anti-depressive, anti-microbial, and anti-cancer effects. Traditional use of 

Hypericum products includes wound healing and resolving infection, which could result from 

potential anti-inflammatory properties. A comprehensive investigation of the anti-

inflammatory activities of H. perforatum extracts was limited, and even fewer studies have 

been done regarding bioactivities of other Hypericum species (229-230). 

In vitro cell culture studies have been done to evaluate various H. perforatum 

preparations and their contents against inflammatory mediator production (89). Bezakova et 

al. (1999) reported inhibition of 12-lipoxygenase by hypericin and pseudohypericin in a H. 

perforatum extract (231). This inhibition could limit the substrate supply for lipid 

inflammatory mediator synthesis. Tedeschi et al. (2003) treated A549 human alveolar 
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epithelial cells, DLD-1 human colon carcinoma cells, and ECV304 human cells with various 

doses of a commercially available H. perforatum extract (232). Expression of iNOS gene, its 

catalytic product NO, as well as STAT-1 protein were found to be decreased at a dose as low 

as 10 µg/mL. The authors also noted that direct inhibition of JAK2 was the mechanism, 

instead of alteration of NF-κB. Some studies found immune-stimulatory activity of H. 

perforatum constituents. Zhou et al. (2004) treated human intestine epithelial cells and 

hepatocytes with hyperforin and found increased IL-8 mediated by MAPK activation (233). 

Hypericin has also been shown to promote the expression of COX-2 protein at respectively 

low concentrations of 125 nM and 150 nM in Hela and T24 cells (234). Quercetin inhibited 

COX-2 activity in peripheral bone marrow macrophages (PBMC) with an IC50  of 76 µM 

(235). In RAW 264.7 mouse macrophages, quercetin and rutin were able to inhibit LPS-

induced COX-2 expression at 80 µM and reduce PGE2 production at 40 µM, although these 

concentrations are not reachable with oral Hypericum consumption (236). Chlorogenic acid 

inhibited 5-lipoxygenase with an IC50 of 1~2 µM (83). Hammer et al. (2008) studied the 

synergistic anti-inflammatory activity of a „four component system‟ comprised of 

pseudohypericin, quercetin, amentoflavone, and chlorogenic acid, and suggested SOCS3 

activation as a mechanism through which this group of components, found in the most active 

subfraction of a H. perforatum ethanol extract, inhibited LPS-induced PGE2 production in 

RAW 264.7 macrophages (229). An ethanolic extract of another Hypericum species, H. 

gentianoides, especially its acylphloroglucinols enriched fraction, was found to have similar 

activity in RAW 264.7 macrophages (42). Yamakuni et al. (2006) studied the anti-

inflammatory activity of garcinone B, a xanthone found in H. patulum, in C6 rat glioma cells. 

They found the inhibition of IκB by garcinone B accounted for the observed decrease in 
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COX-2 expression and PGE2 production (20). An extract of H. androsaemum was studied 

against reactive oxygen and nitrogen species (ROS and RNS) in vitro and found to be potent 

inhibitors of both ROS and RNS (237). The anti-oxidative activity could certainly be a part 

of the anti-inflammatory potential of Hypericum species. 

Animal studies were conducted to test the in vivo anti-inflammatory potential of 

Hypericum products and their major active constituents. Raso et al. (2002) used carrageenan-

induced paw-edema mouse model to study anti-inflammatory activity of a H. perforatum 

extract containing 0.27 % hypericin and 2.5 % hyperforin (238). Twice daily 100 mg/ kg 

body weight oral administration of the extract reduced edema and LPS-induced iNOS and 

COX-2 expression in peritoneal macrophages. Quercetin at 75 mg/kg body weight and rutin 

at 150 mg/kg were studied by Rotelli et al. (2003) for their efficacy against carrageenan-

induced inflammation (239). The two flavonoids were injected intraperitoneally and paw 

edema was measured. Quercetin inhibited 66 % of the edema while rutin showed no effect. 

Although this study used pure flavonoids instead of Hypericum extract, it clearly showed that 

aglycones are probably more bioavailable than glycosides. When absorption is not an issue, 

rutin, but not quercetin, significantly decreased tissue damage on day 6, 7, and 21 after 

injection in rats with induced-arthritis (240). Similar studies either found quercetin or rutin, 

or both were able to alleviate induced-inflammatory paw edema or arthritis (240-242). 

Ozturk et al. (2002) treated Wistar rats with 25, 50, or 60 mg/kg body weight of H. 

triquetrifolium Turra. extract intraperitoneally 30 minutes before carrageenan injection (243). 

The extract significantly reduced paw edema in rats dose-dependently during the 6 hrs period 

after injection. Shen et al. (2002) studied the anti-inflammatory properties of rutin, quercetin, 
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and wogonin (O-methylated flavone) in LPS-treated BALB/c mice (236). Intravenously 

administrated flavonoids significantly reduced NO levels in the serum and iNOS expression, 

but had no effect on COX-2 or PGE2. Abdel-Salam et al. (2005) evaluated the impact of 

orally administrated H. perfortatum extract (50 -300 mg/kg body weight) on rats with 

carrageen-induced edema, electrically or hot plate induced nociception, and pylorus-ligation 

(244). The results indicated strong inhibition of the pain associated with inflammation by the 

extract. However, the extract also exacerbated gastric acid secretion. These results were 

similar to those observed with non-sterol anti-inflammatory drugs (NSAIDs), suggesting 

similar anti-inflammatory mechanism. Diarrhea is often an inflammatory condition, thus 

providing a model to test the anti-inflammatory efficacy of orally ingested agents, such as H. 

perfortatum extract. Hu et al. (2006) used irinotecan to induce intestinal inflammation and 

diarrhea in rats, with or without an 8 day treatment regimen of 400 mg/kg H. perfortatum 

extract (245). Those rats that received treatment had less apoptosis in the intestine, with 

lower TNF-α mRNA expression. Menegazzi et al. (2006) induced lung inflammation using 

carrageen and found 30 mg/kg H. perforatum extract, containing 0.34 % hypericin, 4.1 % 

hyperforin, and 5 % of flavonoids, significantly attenuated lung injury and inflammatory 

cytokine levels by inhibiting the NF-κB and STAT3 pathways (246). In a follow up study, 

the same group reported that the same H. perforatum extract treatment protected mice against 

zymogen-induced multi-organ failure by reducing iNOS expression and scavenging NO 

(247). Sanchez-Mateo et al. (2006) studied various H. reflexum L. Fil extracts and fractions 

against mouse ear edema induced by 12-0-tetradecanoylphorbol-13-acetate (TPA) 

(248).When topically applied at 0.25-1.0 mg/ear, edema was significantly alleviated by the 

extract, although no information regarding light exposure or possible toxicity was provided. 
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A H. rumeliacum subsp. apollinis methanol extract was studied for its protective effect 

against carrageen-induced rat paw edema (249).The extract, with 0.77 % chlorogenic acid, 

0.4 % rutin, 0.01 % isoquercetrin, 0.21 % pseudohypericin, and 0.08 % hypericin, relieved 

edema at 70 mg/kg dose. Zdunic et al. (2009) studied the anti-inflammatory and 

gastroprotective activity of H. perforatum oil extracts in rat models (250). The results 

suggested flavonoids, specifically quercetin and amentoflavone, contributed to the observed 

inhibition of paw edema and intestine mucosa damage. In a recent paper, Paterniti et al. 

(2010) comprehensively investigated the impact of a H. perforatum extract during 

periodontitis (251). The extract used contained 0.34 % hypericin, 4.1 % hyperforin, 5 % 

flavonoids, and 10 % tannins. A 2 mg/kg daily oral dose was applied to mice and lasted eight 

days. By the end of the study, iNOS expression, NF-κB activation, IL-1β and ICAM-1 levels 

were inhibited in the treatment group, with less severe tissue damage and alveolar bone loss 

than was observed in the control group.  

It should be noticed that most inflammation models used in the studies discussed above 

are induced by chemical agents in an acute period, which is an inadequate model for actual 

inflammatory diseases such as acute or chronic infection, cancer, atherosclerosis, or auto-

immune disorders. Therefore, assessing the protective potential of Hypericum products in 

more clinical relevant inflammatory conditions is required in the future. This is especially 

true for infection-induced inflammation, because despite causing tissue damage and clinical 

symptoms, inflammation is required to contain the infection. 

Molecular mechanisms underlying Hypericum‟s anti-inflammatory potential were not 

well-characterized, with only limited literature demonstrating associated NF-κB, MAPK, and 
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JAK-STAT inhibition, mostly under single compound treatments (20, 234, 252-253). 

Although gene transcription profile change under H. perforatum treatment was described 

using murine cells and yeast, the regulatory pathways that lead to the transcriptome change 

remains yet to be revealed (229, 253). Most available information reviewed in this section 

did not provide sufficient information regarding the chemical profile of the extracts used, 

thus making it difficult to compare different studies or evaluate potential synergy between 

active constituents. Future studies on the anti-inflammatory activity of Hypericum species 

need to address the connection between multiple phytochemical components, bioactivity, the 

molecular mechanisms, and probably the overall outcome in animal models that better mimic 

actual inflammatory diseases. 

Hypothesis and objectives 

The current research aims to unveil the chemical constituents of Hypericum species 

that have anti-inflammatory potential and their molecular targets in cell cultures and animal 

models. The central hypothesis of this study is that the synergistic activities of a group of 4 

components (pseudohypericin, amentoflavone, quercetin, chlorogenic acid) contribute to H. 

perforatum ethanol extract‟s anti-inflammatory potential through SOCS3 activation. 

Working hypotheses were derived while addressing individual objectives. Comparisons 

between the chemical constituents of H. perforatum and H. gentianoides and the activities of 

their respective active compounds were made in LPS-stimulated macrophages to test the 

hypothesis that the 4 components and acylphloroglucinols are their respective major activity 

constituents. To determine the importance of SOCS3 activation for the anti-inflammatory 

potential of the H. perforatum extract and the 4 compounds, siRNA was used to knockdown 



www.manaraa.com

50 

SOCS3 in RAW 264.7 cells. Finally, an influenza-infected mouse model was introduced to 

evaluate the in vivo efficacy of H. perforatum extract against acute inflammation and its 

impact on the overall disease outcome. The current research lays a foundation for further 

exploration regarding the molecular targets of active anti-inflammatory components of 

Hypericum species, as well as the overall immune-regulatory effect of these components 

during infection. 
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Chapter 3. IDENTIFICATION OF ANTI-INFLAMMATORY CONSTITUENTS IN 

HYPERICUM PERFORATUM AND HYPERICUM GENTIANOIDES EXTRACTS 

USING RAW 264.7 MOUSE MACROPHAGES 

Modified from a paper submitted to the peer-reviewed journal Phytochemistry. 

Nan Huang, Ludmila Rizshsky, Cathy Hauck, Basil J. Nikolau, Patricia A. Murphy, and 

 Diane F. Birt
 

Abstract 

  Hypericum perforatum (St. John‟s wort) is an herb widely used as supplement for mild 

to moderate depression. Our prior studies revealed synergistic anti-inflammatory activity 

associated with 4 bioactive compounds in a fraction of H. perforatum ethanol extract. 

Whether these 4 compounds also contributed to the ethanol extract activity was addressed in 

the research reported here. Despite the popularity of H. perforatum, other Hypericum species 

with different phytochemical profiles could have their anti-inflammatory potentials attributed 

to these or other compounds. In the current study, ethanol extracts of different Hypericum 

species were compared for their inhibitory effect on LPS-induced prostaglandin E2 (PGE2) 

and nitric oxide (NO) production in RAW 264.7 mouse macrophages. Among these extracts, 

those made from H. perforatum and H. gentianoides demonstrated stronger overall efficacy. 

LC-MS analysis indicated the 4 compounds in H. perforatum extract and pseudohypericin in 

all active fractions. The 4 compounds accounted for a significant part of the extract‟s 

inhibitory activity on PGE2, NO, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) 

in RAW 264.7 as well as peritoneal macrophages. Pseudohypericin was the only compound 
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among the four that was capable of inhibiting inflammatory mediators by itself at the tested 

concentration, making it the pivotal contributor. The lipophilic fractions of H. gentianoides 

extract, which did not contain the previously identified active constituents, decreased PGE2 

and NO potently. These fractions were rich in acylphloroglucinols, including uliginosin A 

that accounted for a proportion of the anti-inflammatory activity observed with the active 

fractions. Overall, the current study revealed a different group of major anti-inflammatory 

constituents in H. gentianoides, while showing that a previously identified 4 compounds 

combination was important for H. perforatum‟s anti-inflammatory potential. 

Introduction 

  Hypericum perforatum (St. John‟s wort) has been among the most studied medicinal 

herbal plants, due to its popularity as an anti-depressant supplement (1). At the same time, 

increasing evidence also suggested that H. perforatum possess anti-inflammatory and anti-

viral activity, which could be potentially be used to alleviate conditions like inflammatory 

bowel disease, diarrhea, and respiratory infection (2-5).  

Besides H. perforatum, other species of the Hypericum genus are being studied to 

identify their constituents, as well as anti-inflammatory, anti-proliferation, and anti-microbial 

activities (6-8). Among these species, a more lipophilic fraction of H. gentianoides methanol 

extract, rich in acylphloroglucinols, was found to have potent inhibitory effect on LPS-

induced macrophage production of prostaglandin E2 (PGE2) (9).  

Our previous studies have shown that H. perforatum ethanol extract inhibited LPS-

induced PGE2 and NO production in RAW 264.7 macrophages, and attributed part of the 
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activity of a highly active fraction of the extract to a group of four compounds including 

pseudohypericin, amentoflavone, quercetin and chlorogenic acid (2, 10). But whether the 4 

compounds could account for the activity of the complete extract, or if they can exert the 

same anti-inflammatory potential in non-transformed primary macrophages remains 

unknown. On the other hand, the wide variety of Hypericum species provided us an 

opportunity to identify novel anti-inflammatory constituents. For instance, 

acylphloroglucinols in H. gentianoides were of particular interest. In the current study, we 

compared the anti-inflammatory potential of ethanol extracts made from various Hypericum 

species in the well established LPS-stimulated RAW 264.7 macrophages and used the 

chemical profiles of the more active species to identify novel agents not found in H. 

perforatum. In addition, we also tested key findings in primary mouse macrophages to 

further validate our results. 

Results 

Cytotoxicity of Hypericum extracts, fractions, and pure constituents 

      None of the extracts, fractions, or pure compounds reduced cell viability at the maximum 

concentrations they were used in bioactivity assays (data not shown). 

Inhibition of inflammatory mediators by different Hypericum extracts  

      Extracts made from different Hypericum species and accessions were applied to RAW 

264.7 macrophages at 10 µg/mL. As shown in Table 1, almost all extracts significantly 

reduced LPS-induced PGE2 and NO production. Among all extracts tested, H. perforatum 
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and H. gentianoides were the only two that inhibited both PGE2 and NO by more than 30% 

compared to the vehicle control.  

LC-MS analysis of H. perforatum extract  

Major identifiable compounds in a H. perforatum ethanol extract were quantified 

previously (10). As Figure 1A shows, the chromatogram of the extract used in the current 

study, which indicated a chemical profile similar to that previously reported, which contained 

chlorogenic acid, rutin, hyperoside, quercetin, amentoflavone, pseudohypericin, hyperforin, 

and hypericin (10).  

H. perforatum extract and its constituents inhibited LPS-induced inflammatory 

mediators  

    Our prior study reported that a group of 4 compounds, comprised of pseudohypericin, 

amentoflavone, quercetin, and chlorogenic acid could account for part of the anti-

inflammatory potential of H. perforatum extract (11); (Huang et al. under review). In the 

current study, we applied DMSO vehicle control, H. perforatum extract, the 4 compounds or 

pseudohypericin alone at the concentrations found in the extract to macrophages, with the 

extract showing stronger decrease of PGE2 and NO. The 4 compounds inhibited TNF-α in 

the cell line and the primary cells, while the extract only decreased TNF-α in peritoneal 

macrophages. Pseudohypericin by itself was only able to mildly lower PGE2 and NO in 

RAW cells, as well as NO and TNF-α in the peritoneal macrophages. Quercetin positive 

control at 10 µM significantly decreased all inflammatory mediators in both cell types. 

Fractionation of H. perforatum extract  
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The extract was subsequently fractionated into eleven fractions according to the peaks at 

different retention time using semi-preparative HPLC, as shown in Figure 1B. 

Fractions of H. perforatum extract inhibited LPS-stimulated PGE2 and NO  

The eleven fractions made from H. perforatum extract were applied to RAW 264.7 

macrophages at concentrations in proportion to their yield. As demonstrated in Table 3, all 

fractions significantly inhibited LPS-induced PGE2 and NO production. Fractions 3, 4, 6, 7 

and 11 had the most potent inhibitory activity at relatively lower concentrations, all 

decreased PGE2 and NO by more than 40% compared to vehicle control. In order to see 

whether the fractions were lowering the inflammatory mediators in a dose-dependent manner, 

we treated the cells with the selected fractions 6, 7 and 11 at 1 µg/mL, 5 µg/mL, and 15 

µg/mL. Figure 2 indicates that the inhibition of both inflammatory mediators by these three 

fractions become stronger with higher dose. All three fractions inhibited NO at as low as 1 

µg/mL, with fraction 11 also able to significantly decrease PGE2 at this concentration. At 15 

µg/mL, fraction 11 was the most potent inhibitor of PGE2 and NO among the three, 

inhibiting PGE2 by ~67% and NO by ~85%. Also in Figure 2, major known compounds 

identified in the fractions are listed below the corresponding fractions. Pseudohypericin was 

found in all three active fractions, while rutin and hyperoside were found in two of them. 

LC-MS analysis of H. gentianoides extract  

Figure 3A shows the LS-MS chromatogram of H. gentianoides ethanol extract similar to 

Hillwig et al. reported for a methanol extract (9), which highlights a distinctive group of 

acylphloroglucinols including uliginosin A, saroaspidin A, and hyperbrasilol A. This extract 
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also contains typical Hypericum constituents such as chlorogenic acid, isoquercetin, and 

quercetin. 

Fractionation of H. gentianoides extract  

The ethanol extract of H. gentianoides was fractionated into ten fractions based on semi-

preparative HPLC detection peaks at different retention time, as shown in Figure 3B. 

Fractions of H. gentianoides extract inhibited LPS-stimulated PGE2 and NO  

All ten fractions made from H. gentianoides extract were applied to RAW 264.7 

macrophages at concentrations proportional to their yield. As shown in Table 4, all but 

fractions 1 and 10 significantly inhibited LPS-induced PGE2 at the tested concentrations. 

Fractions 4, 6, 7, 8 and 9 had relatively stronger PGE2 inhibitory activity at concentrations 

less than 15 µg/mL. With regards to NO, fraction 4 was the only one that did not decrease 

NO production. Fractions 5, 6, 7, 8 and 9 all inhibited NO by > 50% at below 15 µg/mL 

concentrations. Fraction 8 was the apparent most potent fraction by inhibiting PGE2 by 93% 

and NO by 76%. Fractions 5, 8 and 9 at 1 µg/mL, 5 µg/mL, and 15 µg/mL were applied to 

cells to establish dose-response relationship. Figure 4 illustrates that the fraction 8 was the 

only one among the three that could inhibit PGE2 at 1 µg/mL and NO at 5 µg/mL. All three 

fractions inhibited PGE2 and NO in a dose-dependent fashion. Fractions 8 and 9 contained 

acylphloroglucinols, while fraction 5 contained chlorogenic acid and quercetin. 

Uliginosin A in H. gentianoides extract and fractions inhibited LPS-induced 

inflammatory mediators  
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The concentrations of uliginosin A, the most abundant acylphloroglucinols in H. 

gentianoides, were quantified in the H. gentianoides extract, its fractions 5, 8 and 9. RAW 

264.7 macrophages were treated with the plant materials or pure uliginosin A at the 

concentration as it was in the extract and fractions. The resulting inhibition in PGE2 and NO 

are shown in Table 5. The abundance of uliginosin A in 48.5 µg/mL H. gentianoides extract 

was 0.6 µM. At concentrations used here, fractions 5, 8 and 9 contained 0.04, 2.0, and 2.6 

µM uliginosin A respectively. PGE2 was inhibited by uliginosin A only at 2.0 and 2.6 µM, 

while NO, TNF-α and IL-1β were inhibited at 0.6 µM as well. In general, uliginosin A 

accounted for a part of the inhibitory activity of the extract and fraction 8. The trace amount 

of uliginosin A did not reduce the release of any inflammatory mediator or cytokine. At 2.6 

µM, uliginosin A demonstrated comparable impact on inflammatory endpoints as fraction 9. 

Discussion 

The anti-inflammatory potential and chemical profiles of various H. perforatum 

accessions extracted with different methods were previously evaluated (2). However, due to 

the existence of many other Hypericum species, which contain a variety of different 

compounds with different abundance, we expanded the activity screening to nine different 

extracts made from 2 accessions of H. perforatum and 7 other species including H. 

gentianoides, all harvested in 2008. The results shown in Table 1 indicate that all extracts 

except for Elixir were capable of inhibiting LPS-induced macrophage production of PGE2 

and NO at 10 µg/mL concentration. Much to our surprise, Elixir was the least active in the 

current study, while being the most active in the study reported by Hammer et al. (2). This 

could be attributed to year to year plant differences. Considering the overall inhibition on 
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PGE2 and NO, H. perforatum and H. gentianoides extracts stood out as the most potent by 

decreasing both inflammatory mediators by more than 30%; and thus became the focus of the 

subsequent studies. 

The anti-inflammatory potentials of H. perforatum ethanol extract has been studied 

extensively in our laboratory, with the 4 major active compounds (the 4 compounds) in its 

most active fraction identified and their impact on gene transcription reported (10-11). 

Because most dietary Hypericum supplements are made from extracts, instead of fractions, 

whether the compounds identified, enriched in the active fraction, can also account for a 

portion of the extract activity is an important question to answer. Here we found that at the 

same concentrations as they were quantified in the extract, the 4 compounds accounted for a 

portion of the extract‟s PGE2 and NO inhibitory effect in RAW 264.7 macrophages (Table 

2). In addition to PGE2 and NO, we measured TNF-α and IL-1β as well, and found that the 4 

compounds inhibited both while the extract only inhibited IL-1β, suggesting other 

components in the extract negate the inhibition of TNF-α by the 4 compounds. Since 

pseudohypericin was considered the pivotal compound among the 4 compounds, cells were 

treated with it alone (10). Only mild but significant decrease in PGE2 and NO was found 

with pseudohypericin treatment, indicating its importance limited to certain inflammatory 

endpoints. RAW 264.7 macrophages are transformed macrophages that could behave 

differently compared to in vivo macrophages, making it necessary to replicate findings using 

primary peritoneal macrophages in order to interpret the results better (12). The peritoneal 

macrophages generated similar results as compared to the RAW cells under the same 

treatments. The apparent differences between the two cell lines were that the extract inhibited 
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TNF-α in the peritoneal macrophages, and that NO was inhibited by all treatments to a 

greater extent in these cells. Overall, the highly similar trends in by the treatments in the two 

cell lines made the anti-inflammatory potential of H. perforatum extracts and components 

more compelling. 

After fractionation, the 4 compounds were no longer found together in any single fraction, 

despite the fact that most fractions were able to significantly inhibit LPS-induced PGE2 and 

NO production at the concentrations in proportion to their yield from the extract. Among all, 

fractions 6, 7, 11 were selected for chemical profiling using LC-MS and dose-response 

studies. As indicated in Figure 2, these fractions all contained pseudohypericin, and other 

different known constituents, respectively. These three fractions also dose-dependently 

inhibited PGE2 and NO production, showing significant impacts at doses as low as 5 µg/mL. 

Our follow-up experiment in which sub-fractions of fraction 6 were applied to LPS-

stimulated RAW 264.7 cells showed that those sub-fractions that had inhibitory activity 

contained higher amount of pseudohypericin (data not shown). Together, we expanded the 

previously identified importance of pseudohypericin from the anti-inflammatory potential of 

one particular sub-fraction to H. perforatum ethanol extract and fractions (10). 

Acylphloroglucinols have been suggested by Hillwig et al. as the active components in 

the methanol extract of H. gentianoides (9). In the current study, we found that the lipophilic 

fractions of H. gentianoides ethanol extract, which were enriched with these 

acylphloroglucinols, had potent inhibitory activity on LPS-stimulated PGE2 and NO in 

macrophages. Fractions 8 inhibited as much as 90% of the LPS-induced PGE2 production. 

Not all Hypericum species contain significant amount of phloroglucinols, which have been 
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found in H. densiflorum, H. chinence, H. balearicum, and H. empetrifolium, etc. (6-7, 13). 

However, the existence of this group of relatively less studied anti-inflammatory constituents 

in certain Hypericum species, especially H. gentianoides as shown in the current study, could 

account for a part of the observed differences among the species in their anti-inflammatory 

potentials. To pursue this hypothesis, we quantified the amount of the most abundant 

acylphloroglucinol in H. gentianoides, uliginosin A in the extract and three active fractions, 

and used pure uliginosin A at the same concentrations as it was in the extract and fraction to 

treat RAW 264.7 macrophages. Uliginosin A at the concentration as in the extract inhibited 

NO, TNF-α, and IL-1β more moderately compared to the extract, but did not significantly 

reduce LPS-induced PGE2. Uliginosin A in fraction 5 did not account for its anti-

inflammatory impact, while the activity of fractions 8 and 9 could be attributed to their 

relatively abundant uliginosin A. It is intriguing that lipophilic fractions of H. gentianoides 

had strong anti-inflammatory potential that could be largely attributed to uliginosin A 

enriched in these fractions, as this is different from H. perforatum extract and fractions. 

The anti-inflammatory activity of acylphloroglucinols, especially uliginosin A is not well 

characterized (6). The inhibitory effect of uliginosin A on PGE2 synthesis observed here 

might be due to inhibition of microsomal PGE synthase-1 as suggested by Koeberle et al (14), 

since a reduction in cyclooxygenase-2 (COX-2) protein expression were not observed (data 

not shown). As uliginosin A inhibited PGE2, NO, TNF-α, and IL-1β, it is reasonable to 

speculate that an upstream inflammation regulator could be its molecular target. 

 In order to determine the anti-inflammatory activity of uliginosin A in H. gentianoides, 

in vivo studies such as Rossi et al. reported are necessary (15). In addition, bioavailability of 
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acylphloroglucinols needs to be characterized to validate the potential for in vivo efficacy of 

these compounds. Although we again confirmed the importance of the 4 compounds to the 

anti-inflammatory potential of H. perforatum extract and fractions, whether these compounds 

would be active post-absorption is worthy of further investigation. 

Conclusion 

A group of 4 components and uliginosin A respectively contributed to the anti-

inflammatory potential of H. perforatum and H. gentianoides ethanol extracts and active 

fractions in murine macrophages. Further studies could focus on the molecular targets of 

these different active constituents as well as their in vivo efficacy. 

Experimental 

Plant Materials 

Flower stems of H. densiflorum (Accession Ames 27061), H. beanii (Ames 27441), H. 

perforatum „Medizinal‟(Elixir™) (Ames 27452), H. balearicum (Ames 27471), H. bellum (Ames 

27472), H. forrestii (Ames 27479), H. patulum (Ames 27489),  H. gentianoides (Ames 28015), and 

H. perforatum (PI 325351), were harvested between June 17
th

 and July 29
th

, 2008 from the North 

Central Regional Plant Introduction Station (NCRPIS) (Ames, IA) of the U.S. Department of 

Agriculture, Agricultural Research Service (USDA/ARS). The harvested material was dried and 

ground before being stored at - 20 ºC as previously  described (16). Additional information about 

these accessions is available from the Germplasm Resources Information Network (GRIN) database 

at: http://www.ars-grin.gov/npgs/acc/acc_queries.html. 

Extraction and Fractionation of Hypericum plant material 
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Six grams of dried and ground Hypericum material was extracted for 6 h via Soxhlet with 

500 mL 95% ethanol. The extracted product was then filtered before being dried by rotary 

evaporation at 40 ºC, followed by lyophilization. The resulting extract was dissolved in 

DMSO to stock concentrations and stored protected from light exposure at -20 ºC.  

Approximately 0.5 ml of 100 mg/ml Hypericum extract, dissolved in 60% ethanol, was 

loaded onto an YMC-pack ODS-AM 250x10 mm column (AM12S05-2510WT, YMC, 

Allentown, PA). The HPLC system used was a Beckman-Coulter System Gold with a 126 

solvent module, a 168 detector, and an Isco Retriever 500 Fraction Collector. Solvents were 

A: Endotoxin-free water containing 0.1% Acetic acid and B: pure Acetonitrile.  The gradient 

used was from 10% to 100% B for 50 min followed by 2 minutes of 100% B and re-

equilibration at 10% B for 5 minutes. 2 ml fractions were collected and later pooled based on 

HPLC peaks at 330 nm. Depending on the species, ten to twelve fractions were obtained, 

which were concentrated by lyophilization and dissolved in DMSO for storage. All extracts 

and fractions used here have been screened for endotoxin and no detectable level was found 

(17). 

Chemicals 

Pseudohypericin at ≥ 98% purity, according to the manufacturer, was purchased from 

Axxora (San Diego, CA). Quercetin, amentoflavone and chlorogenic acid at ≥ 98%, ≥ 99% 

and ≥ 95% purity, respectively, were acquired from Sigma Aldrich (St. Louis, MO). These 

chemicals were dissolved in DMSO to 100 µM stock concentration, stored at -20 ºC and 

protected from light exposure upon arrival. Uliginosin A was synthesized and provided by Dr. 

George Kraus (unpublished). 
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Chemical analysis of plant materials 

The analysis of extracts and fractions, and quantification of compounds were perform on 

Agilent Technologies‟ Ion Trap 1100 coupled to a UV absorption detector LC-ESI-MS-UV.  

A Zorbax Eclipse Plus C8 3.5 μm, 2.1x150 mm column (Agilent, Santa Clara CA) was used 

for separation. For the mobile phase, an acetonitrile/methanol 9:1 v/v (solvent B) and 10 mM 

ammonium acetate (solvent A) gradient was used. The gradient was increased from 85% 

A/15% B over a 10 min time period to 80% A/20% B, then to 100% B over a 25 min time 

period, and held at 100% B for 5 min. The flow rate was 0.17 mL/min and chromatography 

was conducted at 40 °C (9). All solvents were HPLC grade (Sigma, St. Louis, MO). 

Cell Culture and Treatment with Plant Materials 

RAW 264.7 mouse macrophages (American Type Culture Collection, Manassas, VA) 

were maintained in high-glucose Dulbecco‟s Modified Eagle‟s medium (DMEM) with 

supplementations of 100 IU/mL penicillin/streptomycin, 10% fetal bovine serum and 1% 

sodium bicarbonate (all from Invitrogen, Carlsbad, CA) as described before  under 5% 

carbon dioxide at 37 ºC (2). Mouse peritoneal macrophages were collected by flushing the 

peritoneal cavity of euthanized C57/B6 mice with 6-8 mL of sterile phosphate saline buffer 

(PBS) (Invitrogen) (12). The lavage fluid was centrifuged at 5000 × g. Cell pellets were 

suspended with DMEM medium supplemented with 100 IU/mL penicillin/streptomycin, 0.25 

µg/mL amphotericin, and 10% fetal bovine before being plated to 24 well plates at 5 × 10
5
 

cells per well or 48 well plates at 2 × 10
5
 cells per well. Treatments of extract and pure 

compounds were applied to cells for PGE2, NO, and cytotoxicity assays as reported in prior 

studies (11, 17). Because light-activation is required for the inhibitory properties of 
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naphthodianthrone compounds in Hypericum species on LPS-induced PGE2, experiments 

were conducted in the dark with  a 30 min standard fluorescent lamp light-activation at right 

after the treatments were applied to the cells (16). 

Cytotoxicity Measurement 

The Hypericum extracts, fractions, and pure compounds that were screened for anti-

inflammatory potential were also tested for toxicity against RAW 264.7 macrophages and 

peritoneal macrophages using a protocol modified from our prior study (17). In brief, RAW 

264.7 macrophages and primary peritoneal macrophages were plated in 48-well plates at 5 × 

10
4
 cells per well and treated with Hypericum extracts at 30 µg/mL and the fractions at the 

highest concentrations used in this study for 24 h with a 30 min light-activation. The 

resulting cell viability was measured using Celltiter96 Aqueous One Solution Cell 

Proliferation Assay (Promega, Madison, WI). 

Measurement of Prostaglandin E2, Nitric Oxide and Cytokines 

Cell culture supernatant was collected after 8 h treatment for PGE2 assay, or after 24 h 

treatment for NO and cytokine measurements. PGE2 was measured using a Biotrek PGE2 

enzyme immune assay kit (GE Healthcare, Piscataway, NJ) and NO levels were assessed 

with Griess reagent (Promega, Madison, WI) as described (18). Concentrations of interleukin 

(IL)-1β and tumor necrosis factor (TNF)-α were measured using enzyme-linked 

immunosorbent assay (ELISA) kits (BD Biosciences, Franklin Lakes, NJ) according to the 

manufacturer‟s instructions.  

Statistical Analysis 
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Cell viability, PGE2, NO, and cytokine assay results were analyzed as randomized 

complete block design using ANOVA with cell culture plates as a fixed block. PGE2 and 

cytokine levels were log-transformed before the analysis in order to normalize the data. All 

treatments were compared to the media + DMSO vehicle control with or without LPS 

stimulation, and reported as percentage of the vehicle control in mean ± SEM for each 

treatment. Multiple comparisons between individual treatments and the vehicle control were 

made using pair wise student t test (all using SAS 9.0 SAS Institute, Cary, NC). 
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Figures and Tables 

Figure legends 

Figure 1. LC-MS analysis of and fractionation of H. perforatum extract. Ethanol extract 

of H. perforatum was analyzed using LC-MS (A). Detected peaks are shown here with their 

corresponding constituents. The extract was further fractionated into 11 fractions using semi-

preparative HPLC according to elusion time (B). 

Figure 2. Inhibition of PGE2 and NO by active fractions from H. perforatum extract 

and identification of their known constituents. Active fractions of H. perforatum extract at 

a series of three concentrations of 1, 5, and 15 µg/mL were applied to RAW 264.7 

macrophages with 1 µg/mL LPS stimulation. Quercetin was used as positive control at 10 

µM. Production of PGE2 and NO after 8 h and 24 h treatment respectively are shown as 

percentage of DMSO vehicle control (Mean ± SEM, n=3). The 100% levels of PGE2 and NO 

were 5.5 ± 0.5 ng/mL and 16.5 ± 0.2 µM, respectively * and ** indicate significant (p<0.05 

and p<0.01) difference compared to media+DMSO vehicle control. Known compounds 

found in these extracts using LC-MS are shown under individual fractions. 

Figure 3. LC-MS analysis of and fractionation of H. gentianoides extract. Ethanol extract 

of H. gentianoides was analyzed using LC-MS (A). Detected peaks are shown here with their 

corresponding constituents. The extract was further fractionated into 10 fractions using semi-

preparative HPLC according to elusion time (B). 

Figure 4. Inhibition of PGE2 and NO by active fractions from H. gentianoides extract 

and identification of their known constituents. Active fractions of H. gentainoides extract 

at a series of three concentrations of 1, 5, and 15 µg/mL were applied to RAW 264.7 
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macrophages with 1 µg/mL LPS stimulation. Quercetin was used as positive control at 10 

µM. Production of PGE2 and NO after 8 h and 24 h treatment respectively are shown as 

percentage of DMSO vehicle control (Mean ± SEM, n=3). The 100% levels of PGE2 and NO 

were 5.5 ± 0.5 ng/mL and 16.5 ± 0.2 µM, respectively * and ** indicate significant (p<0.05 

and p<0.01) difference compared to media+DMSO vehicle control. Known compounds 

found in these extracts using LC-MS are shown under individual fractions. 
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Table 1. LPS-stimulated RAW 264.7 mouse macrophages production of PGE2 and NO 

under the treatment of extracts of different Hypericum species and accessions. 

Treatments PGE2 (ng/mL) NO (µM) 
Media + DMSO 4.7 ± 0.3 24.8 ± 1.9 

Extracts at  

10 µg/mL 

H. densiflorum 3.7 ± 0.3  * 18.5 ± 1.0 ** 

H. beanii 3.0 ± 0.2 ** 18.3 ± 1.0 ** 

H. perforatum Elixir 3.8 ± 0.3  *         24.0 ± 1.3   

H. balearicum 3.7 ± 0.2 ** 22.4 ± 0.6  * 

H. bellum 3.5 ± 0.1 ** 18.4 ± 1.0 ** 

H. forrestii 3.7 ± 0.1 ** 19.2 ± 0.4  * 

H. patulum 2.5 ± 0.2 ** 21.0 ± 0.8  * 

H. gentianoides 2.9 ± 0.3 ** 16.8 ± 1.1 ** 

H. perforatum 2.6 ± 0.1 ** 16.2 ± 1.3 ** 

Quercetin at 10 µM 1.1 ± 0.1 ** 11.8 ± 0.7 ** 

Cells were treated with 10 µg/mL ethanol extracts made from different species and accessions of 

Hypericum with 1 µg/mL LPS stimulation. The production of inflammatory mediators PGE2 and NO 

after 8 h and 24 h treatment is shown (Mean ± SEM, n=3). * and ** indicate significant (p<0.05 and 

p<0.01) difference compared to media+DMSO vehicle control.  
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Table 2. LPS-stimulated inflammatory mediator and cytokine release by mouse 

macrophages treated with H. perforatum extract and its compounds. 

Treatments Concentration PGE2 NO TNF-α IL-1β 

  Levels in supernatant (mean ± SEM) 

  ng/mL µM ng/mL pg/mL 

R
A

W
 2

6
4

.7
 m

a
cr

o
p

h
a

g
es

  

Media+DMSO  0.04 ± 0.0
 

0.01 ± 0.2 0.23 ± 0.3 83.2 ± 10 

Media+DMSO+LPS  4.5 ± 0.6
a 

24.1 ± 1.0
a
  9.0 ± 0.3

a
  488 ± 12

a
 

H. perforatum extract 30 µg/mL 1.9 ± 0.4
c
 14.6 ± 0.5

c
 8.6 ± 0.1  368 ± 7

c
 

 

4 compounds 

 

P: 0.08 µM 

Q: 0.38 µM 

A: 0.03 µM 

C: 0.58 µM 

3.2 ± 0.3
b
 18.1 ± 0.2

c
 6.3 ± 0.2

c
 375 ± 9

c
 

Pseudohypericin 0.08 µM 3.5 ± 0.2
b
 21.6 ± 0.6

b
 8.6 ± 0.2 470 ± 28 

Quercetin 10 µM 1.4 ± 0.2
c
 9.5 ± 0.1

c
 3.4 ± 0.5

c
 374 ± 25

c
 

      

  ng/mL µM pg/mL pg/mL 

 

P
er

it
o

n
ea

l 
m

a
cr

o
p

h
a

g
es

 

 

 

Media+DMSO  0.18 ± 0.0 0.62 ± 0.1 31.1 ± 2.1 13.0 ± 1.3 

Media+DMSO+LPS  1.12 ± 0.1
a
 3.73 ± 0.4

a
 91.6 ± 4.1

a
  161 ± 1.3

a
  

H. perforatum extract 30 µg/mL 0.69 ± 0.1
c
 1.54 ± 0.1

c
 67.5 ± 1.7

c
 119.5 ± 17

b
 

 

4 compounds 

P: 0.08 µM 

Q: 0.38 µM 

A: 0.03 µM 

C: 0.58 µM 

0.80 ± 0.1
b
 2.10 ± 0.2

c
 73.4 ± 2.3

b
 134.8 ± 19

 b
 

Pseudohypericin 0.08 µM 0.94 ± 0.1 2.64 ± 0.4
b
 79.1 ± 6.3

b
 146.5 ± 16 

Quercetin 10 µM 0.23 ± 0.0
c
 2.29 ± 0.1

c
 58.8 ± 2.4

c
 116.9 ± 12

c
 

H. perforatum extract, the 4 compounds, pseudohypericin, and quercetin positive control were 

applied to RAW 264.7 macrophages and peritoneal macrophages at concentrations shown above with 

1 µg/mL LPS stimulation (P: pseudohypericin; Q: quercetin; A: amentoflavone; C: chlorogenic acid). 

The release of PGE2 by RAW 264.7 cells after 8 hr, by peritoneal macrophages after 24 hr, and NO, 

TNF-α, and IL-1β after 24 hr of treatment by both cells were quantified. LPS-induced production of 

these inflammatory mediators and cytokines is shown in absolute concentrations (mean ± SEM, n=3). 

Significant induction by LPS is in DMSO vehicle control treatment is indicated by 
a
 (p<0.01), and 

significant inhibition by treatments compared to DMSO+LPS control is indicated by 
b
 (p<0.05) and 

c
 

(p<0.01). 
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Table 3. LPS-stimulated PGE2 and NO production by RAW 264.7 mouse macrophages 

treated with fractions of H. perforatum extract. 

Treatment Concentration Inflammatory mediator production 

           PGE2 (ng/mL) NO (µM) 

Media+DMSO - 4.3 ± 0.2  21.5 ± 1.3  

H. perf extract 58.9  1.4 ± 0.3 ** 8.4 ± 0.4 ** 

 

 

 

 

 

Fractions 

1 33.2  1.1 ± 0.2 ** 7.1 ± 0.6 ** 

2 29.7  1.5 ± 0.1 ** 8.6 ± 0.6 ** 

3 6.7  2.5 ± 0.4 ** 11.4 ± 1.3 ** 

4 1.5  2.2 ± 0.2 ** 10.3 ± 1.1 ** 

5 44.7       µg/mL 0.8 ± 0.1 ** 7.3 ± 0.6 ** 

6 16.5        1.4 ± 0.1 ** 9.5 ± 0.4 ** 

7 6.7  1.7 ± 0.2 ** 11.8 ± 0.6 ** 

8 10.5  3.1 ± 0.2 * 14.2 ± 0.6 ** 

9 2.1  3.0 ± 0.2 * 15.7 ± 0.9 * 

10 23.5  1.9 ± 0.1 ** 10.5 ± 1.3 ** 

11 12.6  1.2 ± 0.2 ** 7.3 ± 1.1 ** 

Quercetin 10           µM  0.8 ± 0.0 ** 6.4 ± 1.0 ** 

 

H. perforatum extract and its fractions at concentrations in proportion to their yield in the fraction 

were applied to RAW 264.7 macrophages with 1 µg/mL LPS stimulation. Cell culture supernatant 

level of inflammatory mediators PGE2 and NO after 8 h and 24 h treatment (Mean ± SEM, n=3) are 

shown. * and ** indicate significant (p<0.05 and p<0.01) difference compared to media+DMSO 

vehicle control.  
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Table 4. LPS-stimulated PGE2 and NO production by RAW 264.7 mouse macrophages 

treated with fractions of H. gentianoides extract 

Treatment Concentration Inflammatory mediator production 

           PGE2 (ng/mL) NO (µM) 

Media+DMSO - 2.7 ± 0.4         15.5 ± 1.3  

H. genti extract 48.5  1.0 ± 0.1 ** 9.9 ± 0.5 ** 

 

 

 

 

 

Fractions 

1 176  2.7 ± 0.4  9.1 ± 1.6 ** 

2 75.1  1.7 ± 0.2 ** 7.3 ± 0.9 ** 

3 25.5 1.5 ± 0.2 ** 5.6 ± 0.3 ** 

4 13.4 1.4 ± 0.2 **        13.8 ± 0.8  

5 6.1         µg/mL 2.0 ± 0.4 * 6.8 ± 1.4 ** 

6 8.6 1.7 ± 0.3 ** 6.7 ± 1.4 ** 

7 13.7  1.6 ± 0.2 ** 7.1 ± 1.1 ** 

8 10.8  0.2 ± 0.0 ** 3.7 ± 0.1 ** 

9 9.3 1.5 ± 0.1 ** 6.8 ± 0.9 ** 

10 6.8  2.6 ± 0.5         12.2 ± 1.9 * 

Quercetin 10           µM      0.6 ± 0.1 **     5.7 ± 0.6 ** 

 

H. gentianoides extract and its fractions at concentrations in proportion to their yield in the fraction 

were applied to RAW 264.7 macrophages with 1 µg/mL LPS stimulation. Cell culture supernatant 

level of inflammatory mediators PGE2 and NO after 8 h and 24 h treatment (Mean ± SEM, n=3) are 

shown. * and ** indicate significant (p<0.05 and p<0.01) difference compared to media+DMSO 

vehicle control.  
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Table 5. LPS-stimulated inflammatory mediator and cytokine release by RAW 264.7 

mouse macrophages treated with H. gentianoides extract, fractions and uliginosin A 

Treatments Concentration PGE2 NO TNF-α IL-1β 

  Levels in supernatant (mean ± SEM) 

  ng/mL µM ng/mL pg/mL 

Media+DMSO  0.1 ± 0.0
 

0.05 ± 0.1   0.8 ± 0.2  69 ± 9 

Media+DMSO+LPS  4.9 ± 0.1
a 

15.6 ± 0.6
a
  12.3 ± 1.7

a
  572 ± 23

a
 

H. gentianoides extract 48.5 µg/mL 1.2 ± 0.3
c
 10.5 ± 0.4

c
   8.1 ± 0.5

c
 305 ± 31

c
 

 

Fraction 

5 6.1 µg/mL 3.5 ± 0.1
b
 8.7 ± 0.2

c
 11.4 ± 0.2 393 ± 22

c
 

8 10.8 µg/mL 0.4 ± 0.1
c
 6.3 ± 0.3

c
   9.3 ± 0.4

c
 248 ± 42

c
 

9 9.3 µg/mL 2.7 ± 0.2
c
 8.3 ± 0.3

c
 10.5 ± 0.3

b
 436 ± 29

c
 

 

 

Uliginosin A 

 

 

0.6 µM 4.5 ± 0.2 9.8 ± 0.6
c
 10.4 ± 0.3

b
 438 ± 26

c
 

0.04 µM 4.9 ± 0.2 14.8 ± 0.6 11.8 ± 0.1 530 ± 19 

2.0 µM 2.0 ± 2.1
c
 8.2 ± 0.2

c
 10.1 ± 0.2

b
 347 ± 47

c
 

2.6 µM 1.8 ± 0.3
c
 7.7 ± 0.2

c
 10.8 ± 0.1

b
 332 ± 37

c
 

Quercetin 10 µM 0.9 ± 0.1
c
 4.0 ± 0.3

c
  5.9 ± 0.5

c
 399 ± 33

c
 

 

H. gentianoides extract, three of its fractions, uliginosin A, and quercetin positive control were 

applied to RAW 264.7 macrophages at concentrations shown above with 1 µg/mL LPS. Production of 

PGE2 after 8 hr, as well as NO, TNF-α, and IL-1β after 24 hr of treatment were quantified. LPS-

induced production of these inflammatory mediators and cytokines is shown in absolute 

concentrations (mean ± SEM, n=3). Significant induction by LPS is indicated by 
a
 (p<0.01), and 

significant inhibition by treatments compared to DMSO+LPS control are indicated by 
b
 (p<0.05) and 

c
 (p<0.01). 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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CHAPTER 4. THE INHIBITION OF LIPOPOLYSACCHARIDE-INDUCED 

MACROPHAGE INFLAMMATION BY 4 COMPOUNDS IN HYPERICUM 

PERFORATUM EXTRACT IS PARTIALLY DEPENDENT ON THE ACTIVATION 

OF SOCS3 

Modified from a paper submitted to the peer-reviewed journal Phytochemistry. 

Nan Huang, Ludmila Rizshsky, Cathy C. Hauck, Basil J. Nikolau, Patricia A. Murphy, and 

Diane F. Birt 

Abstract 

Our previous studies found that 4 compounds, namely pseudohypericin, amentoflavone, 

quercetin, and chlorogenic acid in Hypericum perforatum ethanol extract synergistically 

inhibited lipopolysaccharide (LPS)-induced macrophage production of prostaglandin E2 

(PGE2). Microarray studies led us to hypothesize that these compounds inhibited PGE2 

production by activating suppressor of cytokine signaling 3 (SOCS3). In the current study we 

used siRNA to knockdown the expression of SOCS3 in RAW 264.7 macrophages and 

investigated the impact of H. perforatum extract and the 4 compounds on inflammatory 

mediators and cytokines. We found SOCS3 knockdown significantly compromised the 

inhibition of PGE2 and nitric oxide (NO) by the 4 compounds, but not by the extract. The 4 

compounds, but not the extract decreased interleukin-6 (IL-6) and tumor necrosis factor-α 

(TNF-α), while both of them lowered interleukine-1β. SOCS3 knockdown further decreased 

IL-6 and TNF-α. Pseudohypericin was the major contributor to the PGE2 and NO inhibition 

in cells treated with the 4 compounds and its activity was lost with SOCS3 knockdown. 
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Cyclooxygenase-2 (COX-2) and inducible NO synthase protein expression were not altered 

by the treatments, while COX-2 activity was decreased by the extract and the 4 compounds 

and increased by SOCS3 knockdown. In summary, we demonstrated that the 4 compounds 

inhibited LPS-induced PGE2 and NO through SOCS3 activation. The reduction of PGE2 can 

be partially attributed to COX-2 enzyme activity, which was significantly elevated with 

SOCS3 knockdown. At the same time, our results also suggest that constituents in H. 

perforatum extract were alleviating LPS-induced macrophage response through SOCS3 

independent mechanisms.  

Introduction 

Macrophages are not only critical components of innate immunity, but they also play an 

important role in regulating adaptive immunity and maintaining the balance of overall 

immune function (1). Toll-like receptors (TLRs) are major receptors found in macrophages 

that recognize exogenous and endogenous stimuli and mediate subsequent cellular responses. 

Among TLRs, TLR-4 binds to lipopolysaccharide (LPS) on the cell walls of Gram negative 

bacteria (2). LPS stimulation of macrophages leads to activation of nuclear factor-kappa B 

(NF-κB) and mitogen-activated protein kinase (MAPK) pathways, which will promote the 

secretion of inflammatory mediators, reactive oxygen species, cytokines and chemokines (3).  

The magnitude and essence of inflammatory responses induced in macrophages are 

determined by crosstalk among different cell signaling pathways such as Janus kinase-signal 

transducer and activator of transcription (JAK-STAT) that respond to extracellular 

microenvironment (1-2, 4). While being a pivotal defense against pathogens, inflammation is 
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also the culprit of many pathological processes such as arthritis, bronchitis, and 

atherosclerosis (3-4).  

Hypericum perforatum, more commonly known as „St. John‟s wort‟, has been found to 

possess anti-inflammatory activities (5-6). Using an LPS-stimulated RAW 264.7 mouse 

macrophage model, our laboratory studied the inhibition of the inflammatory mediator 

prostaglandin E2 (PGE2) by H. perforatum ethanol extract and using bioactivity guided 

fractionation identified a group of 4 compounds that accounted for the anti-inflammatory 

effect of the most active fraction from the extract (7-8). Pseudohypericin, amentoflavone, 

quercetin, and chlorogenic, together referred to as “the four component system”, acted 

synergistically inhibiting LPS-induced PGE2 production by RAW 264.7 macrophages (8). 

Further study by Hammer et al. using microarray to measure changes in transcriptome in 

these cells suggested that genes involved in the JAK-STAT pathway may explain the 

observed activity of H. perforatum fraction and the 4 compounds (9). Specifically, the 

elevated expression of suppressor of cytokine signaling 3 (SOCS3) was of particular interest 

due to the fact that SOCS3 is a negative regulator of JAK-STAT pathway during TLR4 

activation (10-12). SOCS3 was also shown to connect signaling between JAK-STAT and 

MAPK pathways, therefore could be a candidate target of the anti-inflammatory activity (1). 

The current study set out to test the hypothesis that SOCS3 activation is critical for the 

inhibition of macrophage inflammatory response by the 4 compounds, and is also important 

for the overall activity of non-fractionated H. perforatum extract. We established SOCS3 

knockdown RAW 264.7 macrophages using SOCS3 specific short interfering RNA (siRNA) 
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and used these cells to extensively study the influence of H. perforatum extract and the 4 

compounds on LPS-induced inflammation. 

Methods and Materials 

Plant materials. All plant material of H. perforatum (Accession PI 325351) was 

acquired in 2008 from the North Central Regional Plant Introduction Station (NCRPIS) 

(Ames, IA) of the U.S. Department of Agriculture, Agricultural Research Service 

(USDA/ARS), using methods described in Schmitt el al. (13).  

Extraction and Fractionation of H. perforatum. Six grams of dried and ground H. 

perforatum (Accession PI 325351) were extracted for 6 h via Soxhlet with 500 mL 95% 

ethanol. The extract was then filtered and subsequently dried by rotary evaporation at 40 ºC 

followed by lyophilization. The dried extract was dissolved in dimethyl sulfoxide (DMSO) to 

139.2 mg/mL stock concentration and stored without light exposure at -20 ºC.  

LC-ESI-MS-UV quantification of chemically-defined compounds. Specific 

compounds were quantified by subjecting extracts to analysis on an Agilent Technologies Ion 

Trap 1100 mass spectrometer, coupled with a UV absorption detector (LC-ESI-MS-UV). A 

Zorbax Eclipse Plus C8 3.5 µm, 2.1 × 150 mm column (Agilent, Santa Clara, CA) was used 

for separation. The mobile phase was a gradient formed between acetonitrile/methanol 9:1 

v/v (solvent B) and 10 mM ammonium acetate (solvent A) maintained at 40 °C. The gradient 

was initially at 85% A/15% B and changed over a 10 min period to 80% A/20% B, then to 

100% B over a 25 min period, and was held at 100% B for 5 min. The flow rate was 0.17 

mL/min (14). All solvents were HPLC grade (Sigma, St. Louis, MO). 
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Chemicals. Pseudohypericin at ≥ 98% purity was purchased from Axxora (San Diego, 

CA). Quercetin, amentoflavone and chlorogenic acid at ≥ 98%, ≥ 99% and ≥ 95% purity 

(reported by manufacturer), respectively, were purchased from Sigma Aldrich (St. Louis, 

MO). Upon arrival, these chemicals were dissolved in DMSO to 100 µM stock concentration, 

protected from light exposure and stored in -20 ºC.  

Cell Culture and Treatment with Plant Materials. RAW 264.7 mouse macrophages 

(American Type Culture Collection, Manassas, VA) were cultured in high-glucose 

Dulbecco‟s Modified Eagle‟s medium supplemented with 100 IU/mL penicillin/streptomycin, 

10% fetal bovine serum and 1% sodium bicarbonate (all from Invitrogen, Carlsbad, CA) as 

described by Hammer et al. (7). Cells were incubated under 5% carbon dioxide at 37 ºC. 

Treatments of extract and pure compounds were applied for PGE2, NO, and cytotoxicity 

assays, Western blotting, and quantitative real-time PCR (qRT-PCR) were done as 

previously described (9, 15). Due to the light-activation required for the inhibitory properties 

of naphthodianthrone compounds in H. perforatum on LPS-induced PGE2, all experiments 

were conducted in the dark except for exposure to 30 min standard fluorescent lamp light-

activation at the beginning of incubation with treatments (13). 

SOCS3 Knockdown RAW264.7 Mouse Macrophages. Cells were plated in 6-well 

plates and incubated to 60% confluence before transfection. Mouse SOCS3 specific siRNA 

(sc-41001) and scrambled control siRNA (sc-44230) in transfection medium (sc-36868) at 5 

µg/mL were mixed with equal volumes of medium containing 6.7% (v/v) transfection 

reagent (sc-29528) and incubated for 45 min at room temperature (Santa Cruz Biotechnology, 

Santa Cruz, CA). Cells were washed with transfection medium twice before application of 
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100 µL of the mixture of siRNA and transfection reagent followed by 800 µL of transfection 

medium. After the 6 h initial incubation, 1 mL fresh high-glucose DMEM medium 

supplemented with 20% serum, 20% sodium bicarbonate, and 200 IU/mL 

penicillin/streptomycin (all from Invitrogen, Carlsbad, CA) was added to each well. 

Supernatant was replaced with 2 mL normal medium as described in the cell culture methods 

24 h from the beginning of transfection. Non-transfected cells were treated with transfection 

reagent alone without siRNA and used as a control in the assays. After an additional 24 h 

incubation, cells were resuspended and plated in 6/24/48-well plates or Petri dishes for 

treatment. 

Cell Viability Measurement. The H. perforatum extract and pure compounds that were 

screened for bio-activity were also tested for cytotoxicity using the protocol described in 

Huang et al. (15) with the addition of 30 min light activation. In brief, RAW 264.7 

macrophages with and without SOCS3 siRNA transfection, plated in 48-well plates, were 

treated with H. perforatum extract at 30 µg/mL and the four components at 10 times of their 

concentrations in the extract for 30 min light activation and 23.5 h incubation, followed by 

measurement of cell viability with Celltiter96 Aqueous One Solution Cell Proliferation 

Assay (Promega, Madison, WI). 

Prostaglandin E2, Nitric Oxide and Inflammatory Cytokine Measurement. The 

supernatant in cell culture wells was collected after 8 h treatment for PGE2 assay, or after 24 

h treatment for NO and cytokine assays, respectively. PGE2 was measured with Biotrek 

PGE2 enzyme immune assay (GE Healthcare, Piscataway, NJ) and NO levels with Griess 

reagent (Promega, Madison, WI) using protocols reported before (16). Concentrations of 
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interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the supernatant were 

measured using enzyme-linked immunosorbent assay (ELISA) kits (BD Biosciences, 

Franklin Lakes, NJ) according to the manufacturer‟s instructions.  

RNA Extraction and qRT-PCR. After treatment with or without LPS in 6-well plates, 

cells were collected using a rubber policeman following PBS washes. RNA from the cells 

was extracted using the Trizol (Invitrogen) method (9).  To further purify the extracted RNA, 

an RNeasy purification kit was used with RNAse-free DNAse (Qiagen, Valencia, CA) (17). 

RNA quality and quantity were then assessed using a NanoDrop 1000 spectrophotometer 

(NanoDrop Products, Wilmington, DE).  

The purified RNA was reverse-transcripted to cDNA using an iScript cDNA synthesis kit 

as previously described (9), followed by quantification using an iCycler coupled with a MyiQ 

optical module (all from BioRad, Hercules, CA) under the conditions: 95 ºC for 5 min, 40 

cycles of 95 ºC for 30 s, 56 ºC for 30 s, 72 ºC for 30 s, followed by 95 ºC for 1 min, and 55 

ºC for 1 min. Primers used were adopted from Hammer et al. with an annealing temperature 

of 55 ºC and acquired from Integrated DNA Technologies, Inc. (Coralville, IA) (9). The 

sequence of primers was: 5‟-ATTCACCCAGGTGGCTACAG-3‟ (sense) and 5‟-

GCCAATGTCTTCCCAGTGTT-3‟ (anti-sense) for SOCS3; 5‟-

CAATGTGTCCGTCGTGGAT-3‟ (sense) and 5‟-AGCCCAAGATGCCCTTCAG-3‟ (anti-

sense) for the housekeeping gene glyceraldehydes 3-phosphate dehydrogenase (GAPDH).  

Enzyme Expression and Activity Measurement. Cell lysate was collected after 8 h or 

24 h treatment in Petri dishes with plant materials or pure compounds (15). The 

concentration of protein was determined with BCA assay and equal amount of protein from 
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each treatment was separated in SDS-PAGE gel followed by blotting, antibody incubation 

and ECL detection (GE Healthcare, Piscataway, NJ) (7). Primary antibodies were used 

against SOCS3 (sc-51699), COX-2 (sc-19999), iNOS (sc-7271), and α-tubulin (sc-8035) 

with dilutions of 1:1000, 1:1000, 1:600, and 1:2000, respectively (15). Relative protein 

amount was quantified using arbitrary densities reported by Quantity One program (Bio-Rad, 

Hercules, CA).  

Enzyme activities of COX and iNOS were measured with a COX Fluorescent Activity 

Assay Kit and a NOS Activity Assay Kit (Cayman Chemicals, Ann Arbor, MI), respectively, 

according to manufacturer‟s instructions (17).  

Statistical Analysis. Cell viability, PGE2, NO, enzyme protein amount, enzyme activity, 

and mRNA expression level were analyzed as a randomized complete block design using 

ANOVA with cell culture plates as a fixed block. PGE2 and mRNA expression levels were 

log-transformed before the analysis to achieve normal distribution. All treatments with or 

without LPS stimulation were compared to the media + DMSO vehicle control, and the 

percentage of vehicle control was reported in mean ± SEM for each treatment. Subsequent 

multiple comparisons between individual treatments and the vehicle control were made using 

pairwise student t test. Comparisons between different treatments were made using Tukey 

adjustment (SAS 9.0 SAS Institute, Cary, NC). 

Results 

Knockdown of LPS-induced SOCS3 expression. In order to validate the knockdown of 

SOCS3 in RAW 264.7 macrophages transfected with SOCS3 siRNA, cells that were not 
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transfected, transfected with scrambled siRNA, or transfected with SOCS3 siRNA were 

incubated with or without 1 µg/mL LPS for 18 h before harvest followed by RNA and 

protein extraction. As shown in Figure 1, LPS increased the expression of SOCS3 mRNA to 

100-fold and SOCS3 protein to 1.5 fold of base level in non-transfected and scrambled 

siRNA-transfected RAW 264.7 macrophages. While not affecting the expression of GAPDH 

mRNA and β-actin protein, SOCS3 specific siRNA transfection significantly negated the 

LPS-stimulated SOCS3 expression, thus confirmed the specific knockdown of SOCS3 gene 

using siRNA.  

Quantification of the 4 compounds in H. perforatum extract. Because we used extract 

made from the 2008 H. perforatum harvest, instead of the extract previously characterized by 

Hammer et al. (7), the abundance of the 4 compounds was analyzed using LC-MS-UV to 

allow us to quantify the 4 compounds within this extract. Table 1 shows that in the extract 

that were composed of 30 µg of dried mass per mL, the concentration of chlorogenic acid 

was the highest among the four at 0.58 µM, followed in decreasing concentrations by 

quercetin at 0.38 µM, pseudohypericin at 0.08 µM, and amentoflavone at 0.03 µM. 

Cytotoxicity of H. perforatum extract, and the 4 compounds with SOCS3 

knockdown. Although we controlled the treatment condition by limiting light-activation to 

30 min, H. perforatum extract contains potentially cytotoxic compounds such as hypericin 

and pseudohypericin which have light-dependent toxicity (13). Due to the broad spectrum of 

biological processes that SOCS3 gene was associated with, the viability of RAW 264.7 could 

be affected by knocking down this gene. Therefore, we conducted cytotoxicity assays. The 

results suggested no change in the number of viable cells when cells were treated with the 
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extract or the 4 compounds, with and without SOCS3 knockdown (data shown in 

Supplemental Figure 1). 

Inhibition of LPS-induced PGE2 and NO production by H. perforatum extract and 

the 4 compounds with SOCS3 knockdown. After successfully establishing the SOCS3 

knockdown macrophage model, we applied H. perforatum extract and the 4 compounds at 

the concentrations as in the extract (Table 1) to non-transfected, scrambled siRNA 

transfected, and SOCS3 siRNA transfected RAW 264.7 macrophages with and without LPS. 

 Figure 2A reveals that LPS-induced PGE2 production by macrophages without SOCS3 

knockdown was significantly reduced by H. perforatum extract to approximately 50% of that 

of DMSO vehicle control, and by the 4 compounds to 82% of control. The inhibition by the 4 

compounds was negated in SOCS3 knockdown cells, whereas the inhibition by H. 

perforatum extract remained the same with SOCS3 knockdown. Quercetin positive control at 

10 µM was able to significantly decrease LPS-induced PGE2 in cells with and without 

SOCS3 siRNA transfection. 

As shown in Figure 2B, NO production induced by LPS was significantly inhibited by 

the extract and the 4 compounds to ~60% and ~70% of DMSO vehicle control respectively in 

non-transfected and control siRNA transfected cells. SOCS3 knockdown slightly but 

significantly decreased NO release with vehicle control treatment by 15%. The inhibition of 

NO production by the 4 compounds was compromised by SOCS3 knockdown from ~30% to 

~10%, while the inhibition by the extract and quercetin positive control was not affected.   
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PGE2 and NO production without LPS induction averaged 0.04 ng/mL and ~0 µM, 

respectively, for DMSO vehicle control, with no difference observed among either treatments 

or transfection conditions. 

Different effects on LPS-induced inflammatory cytokine production of H. 

perforatum extract and the 4 compounds with SOCS3 knockdown.  We also assessed the 

impact of SOCS3 siRNA on cytokines secreted by RAW 264.7 macrophage cells. LPS-

induced inflammatory cytokines IL-1β, IL-6 and TNF-α were quantified in cell culture 

supernatants collected after 24 h treatment with H. perforatum extract and the 4 compounds. 

Both the extract and the 4 compounds significantly inhibited IL-1β by ~30% compared to 

DMSO vehicle control in RAW 264.7 macrophages with and without SOCS3 knockdown 

(Figure 3A). Only the 4 compounds, but not H. perforatum extract, decreased LPS-induced 

IL-6 and TNF-α production by cells without SOCS3 knockdown by ~20% and 30%, 

respectively (Figure 3B and 3C). SOCS3 knockdown significantly reduced IL-6 and TNF-α 

in vehicle control and extract treated cells, and further inhibited both cytokines when treated 

with the 4 compounds. 

Inhibition of LPS-induced inflammatory response by combinations of the 

compounds with SOCS3 knockdown. In order to investigate whether the dependence on 

SOCS3 activation could be attributed to individual compound(s), we applied three of the 4 

compounds individually and in combination: pseudohypericin (P), amentoflavone (A), P+A, 

P+quercetin (Q), Q+A, and P+Q+A to non-transfected, scrambled siRNA transfected, and 

SOCS3 siRNA transfected RAW 264.7 macrophages with LPS. Quercetin was not used by 

itself because we found it not able to inhibit either PGE2 or NO at a concentration of 0.38 
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µM (data not shown). Chlorogenic acid was excluded because Hammer et al. found it was the 

least important among the four (8).  

Figure 4A shows that besides the 4 compounds together, pseudohypericin, 

amentoflavone, and the combinations involving either or both of them significantly reduced 

PGE2 production by the macrophages without SOCS3 knockdown. SOCS3 knockdown 

compromised the inhibitory effect of treatments that contained pseudohypericin, but not 

those with amentoflavone or amentoflavone and quercetin. LPS-induced NO production by 

cells without SOCS3 knockdown was decreased by the 4 compounds, pseudohypericin alone, 

and all combinations that included pseudohypericin (Figure 4B). When SOCS3 was knocked 

down, quercetin plus amentoflavone was the only treatment that slightly, yet significantly 

reduced NO production.  All treatments except for pseudohypericin alone inhibited IL-1β 

production by cells with and without SOCS3 knockdown (Figure 4C). The production of 

TNF-α was lowered by the 4 compounds, and combinations of individual compounds, but not 

by pseudohypericin or amentoflavone alone. When the SOCS3 gene was knocked down, 

TNF-α was significantly lowered within each treatment in comparison to their counterparts 

without knockdown (Figure 4D). 

Expression of COX-2, iNOS and SOCS3 proteins in SOCS3 knockdown 

macrophages after H. perforatum extract and 4 compounds treatments. Protein 

expression levels of COX-2 after 8 h treatment with H. perforatum extract or the 4 

compounds, of iNOS after 24 h treatment, and of SOCS3 after 8 and 24 h treatment in 

macrophages with or without SOCS3 knockdown were assayed by Western blot. 
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After an 8 h induction with LPS stimulation, COX-2 protein abundance was significantly 

elevated, as shown in Figure 5A and 5B. Quercetin positive control at 100 µM was able to 

reduce the expression of COX-2. No effect was seen with either the plant material treatments 

or SOCS3 knockdown compared to the DMSO non-transfected control. LPS treatment also 

significantly raised SOCS3 expression, which was further elevated by H. perforatum extract 

and the 4 compounds to approximately 120% of vehicle control, as indicated in Figure 5C 

and 5D. SOCS3 specific siRNA knockdown negated the LPS-induced activation of SOCS3 

expression. The increase of SOCS3 expression by the extract and 4 compounds was not seen 

in SOCS3 knockdown cells. 

iNOS protein expression profiles after 24 h treatment are demonstrated in Figure 5E and 

5F. LPS significantly increased iNOS expression, which was dampened by quercetin positive 

control. Neither H. perforatum extract nor the 4 compounds significantly affected LPS-

induced iNOS expression. However, SOCS3 knockdown slightly, but significantly elevated 

the amount of iNOS enzyme compared to non-transfected vehicle control. SOCS3 protein 

expression was increased after 24 h LPS-stimulation (Figure 5E and 5F). H. perforatum 

extract and the 4 compounds further augmented SOCS3 protein level in cells without 

knockdown by 20% and 14% on average, respectively (Figure 5G and 5H). Activation of 

SOCS3 expression was compromised by specific siRNA transfection, and no plant material 

or 4 compounds treatment effect were noted in SOCS3 knockdown cells.  

Alpha-Tubulin protein was measured at both 8 h and 24 h time points and no difference 

in expression was observed with SOCS3 knockdown or plant material treatments (data not 

shown). 
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Enzyme activity of LPS-induced COX-2 and iNOS in SOCS3 knockdown 

macrophages after H. perforatum extract and the 4 compounds treatments. Activities of 

enzymes COX-2 and iNOS in LPS-stimulated RAW 264.7 macrophages were assessed as 

described in the methods, with results depicted in Figure 6. Figure 6A indicates that H. 

perforatum extract and the 4 compounds inhibited COX-2 enzyme activity in cells without 

SOCS3 knockdown by ~50% and ~40%, respectively. When SOCS3 gene was knocked 

down, COX-2 activity in DMSO vehicle control and 4 compounds treated cells was nearly 

doubled, however, this doubling was blocked in the extract treated cells. On the other hand, 

neither the treatments nor SOCS3 knockdown altered the activity of iNOS in the 

macrophages (Figure 6B). 

Discussion 

SOCS3 has been shown to be important for the regulation of signal transduction within 

innate and adaptive immune cells, including in macrophages during LPS stimulation (10, 18). 

Berlato et al. (19) and Qasimi et al. (20) found that the presumptive anti-inflammatory 

cytokine IL-10 inhibited TNF-α and NO production by activated macrophages through the 

activation of SOCS3. Nevertheless, certain microorganisms such as influenza A virus and 

probiotic Bifidobacterium are able to compromise host immune response or inhibit 

inflammation by increasing SOCS3 expression (21-22).  

Previous research by Hammer et al. identified a group of four compounds comprised of 

pseudohypericin, amentoflavone, quercetin and chlorogenic acid that synergistically 

accounted for the majority of the PGE2 inhibition by an active H. perforatum fraction (8). 

Subsequent studies demonstrated that 8 h to 24 h after treatment, LPS-activated SOCS3 
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activation was further elevated by a fraction of H. perforatum ethanol extract and the 4 

compounds (9). This observation provided the foundation for studying the role of SOCS3 

activation in the anti-inflammatory activity of H. perforatum extract and the 4 compounds. 

For this purpose, we employed SOCS3 specific siRNA transfection to transiently knockdown 

SOCS3 expression in RAW 264.7 macrophages. Figure 1 shows that LPS treatment 

increased SOCS3 mRNA transcription and protein expression, which were considerably 

dampened by siRNA transfection, thus confirming the knockdown. 

The 4 compounds were originally identified by Hammer et al. as the major contributor to 

the anti-inflammatory activity of an active 3rd round fraction from a H. perforatum extract 

(8). Due to the enrichment and potential optimization of the proportion of active compounds 

during activity-guided fractionation, fraction 3A at 10 µg/mL concentration was able to 

inhibit PGE2 by 78%, which is more than the extract at 30 µg/mL used in this study. In the 

current study, we associated the activity of the whole extract to that of the 4 compounds in 

the hope to better unveil the mechanism by which different constituents exert their anti-

inflammatory potential. Table 1 provides the concentrations of the 4 compounds used to 

compare with the extract in the present investigation, as well as in the original four 

component system. It is apparent that the concentration and ratio of individual compounds in 

the extract was different from that of the four component system, and we assumed that there 

were many additional compounds in the extract that might interact with the 4 compounds. 

In addition to PGE2, we included NO in the current study as another macrophage 

inflammation marker (15, 23). Consistent with our prior findings, both H. perforatum extract 

and the combinations of key constituents significantly decreased LPS-induced PGE2 and NO 
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production in macrophages. As expected, due to the greater amount and variety of 

constituents in H. perforatum extract, the 4 compounds accounted for less of the overall 

activity of the extract than they did for the sub-fraction used previously by Hammer et al. (8). 

SOCS3 knockdown negated PGE2 inhibition and significantly compromised NO inhibition 

by the 4 compounds, but not by the extract. This suggested the pivotal role of SOCS3 

activation in the inhibition of LPS-induced PGE2 and NO by the 4 compounds, as well as the 

existence of alternative, SOCS3 independent, pathways that contribute to the activity of H. 

perforatum extract. Therefore, it was important for us to study individual and combinations 

of compounds‟ dependence on SOCS3 inhibition of LPS-induced inflammation.  

Cytokine secretion is a fundamental part of macrophage inflammatory response to LPS 

stimulation. H. perforatum extract and the 4 compounds were able to inhibit IL-1β by ~30%, 

which was not affected by SOCS3 knock-down. IL-6 and TNF-α were attenuated only by the 

4 compounds but not by the ethanol extract of H. perforatum. SOCS3 knockdown 

significantly lowered IL-6 and TNF-α compared to the cells receiving the same treatment but 

without knockdown, which is consistent with observations of Liu et al. (24) and Liu et al. 

(11). Our findings with regards to cytokines in general indicated that the inhibitory effect by 

H. perforatum extract and the 4 compounds on these cytokines was independent of SOCS3 

activation. The fact that only the 4 compounds were able to inhibit IL-6 and TNF-α, while no 

significant reduction was noted by the extract suggested that a potential interaction between 

these constituents and other compounds in the extract may have compromised a potential 

inhibition. This is similar to our previous studies, in which Hammer et al. detected inhibition 
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of TNF-α by the four component system but not by fraction 3A which was rich in the noted 

four compounds (8).  

We were also interested in identifying individual constituents that depend on SOCS3 

activation to exert anti-inflammatory activity. Because chlorogenic acid, which only 

modestly enhanced the activity of the other constituents, was apparently the least important 

of the 4 compounds, we only explored applying combinations of the other three compounds 

to macrophages with and without SOCS3 knockdown (8). The results indicated mechanistic 

similarities as well as differences between the inhibition on PGE2 and NO. Pseudohypericin 

was capable of reducing both PGE2 and NO by itself through a potential SOCS3 dependent 

mechanism, whereas amentoflavone alone significantly decreased LPS-induced PGE2 

production without being affected by SOCS3 knockdown. Therefore, we not only confirmed 

our previous finding that pseudohypericin was the primary contributor among the four in 

inhibiting PGE2, but further identified it as the major player in inhibiting NO. In contrast to 

Hammer et al., our results found that amentoflavone and quercetin were able to inhibit the 

inflammatory mediators alone without the presence of pseudohypericin, but we used a higher 

concentration of these constituents since we were assessing concentrations that were found in 

an ethanol extract. It also appeared that pseudohypericin was necessary for the dependence 

on SOCS3 activation of the anti-inflammatory activity of the 4 compounds.  Aside from 

PGE2 and NO, we also measured the inhibition on IL-1β and TNF-α. In addition to 4 

compounds together, combinations of two or three of pseudohypericin, amentoflavone, and 

quercetin also repressed IL-1β and TNF-α. Amentoflavone alone was found to inhibit IL-1β 
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by similar magnitude as the 4 compounds. Again, we found no sign of involvement of 

SOCS3 in the inhibition of these cytokines. 

In order to further explore the mechanism through which the four compounds SOCS3-

dependently inhibit PGE2 and NO production, we measured the protein expression levels of 

COX2, iNOS, and SOCS3, as well as activity of critical enzymes COX2 and iNOS at 8 h or 

24 h time point after treatment. 

SOCS3 protein was significantly elevated by LPS stimulation, and further magnified by 

treatments of extract and the 4 compounds. This was in accordance to what Hammer et al. 

reported in studies of mRNA transcription (9). SOCS3 siRNA transfection dampened the 

activation of SOCS3 and leveled its expression among all treatments. Other than with 100 

µM quercetin in the positive control, no change in LPS-induced COX-2 protein abundance 

was observed. SOCS3 knockdown did not affect COX-2 protein abundance. Neither did the 

extract or the 4 compounds decrease LPS-induced iNOS expression, which was found 

slightly increased by SOCS3 knockdown. Despite seeing the same change in cytokines in 

SOCS3 knockdown macrophages, our results on NO and iNOS were different from what Liu 

et al reported, where no change in iNOS and a decrease in NO production were found (11). 

Our observation could relate to our use of a different cell line, and the reason for the 

discrepancy between iNOS and NO was not clear. Based on what we have seen, the 

inhibition of PGE2 and NO by H. perforatum extract and the 4 compounds was not mediated 

through decreasing COX-2 and iNOS. 

We then assessed whether changes in enzyme activity, without altering enzyme 

abundance, could explain the reduced production of PGE2 and NO. COX-2 activity was 
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inhibited by more than 40% when cells were treated with H. perforatum extract and the 4 

compounds, which could account for the reduced PGE2 production. SOCS3 knockdown 

increased COX2 activity to almost two-fold in cells treated with vehicle control and 4 

compounds, but not in cells treated with extract. As far as we know, this is the first time 

increased COX2 activity has been reported in cells with SOCS3 knockdown. Our results are 

consistent with interference of the SOCS3-mediated negative regulation of COX2 activity by 

constituents in the extract other than the four compounds, which is consistent with the 

observed SOCS3 independent inhibition of PGE2 by the extract. It is interesting to see that 

increased COX-2 activity in SOCS3 knockdown cells did not lead to elevated PGE2 

production. However, given that SOCS3 has been associated with both pro- and anti-

inflammatory regulations, other enzymes in eicosanoid biosynthesis pathways, such as 

phospholipase A2 or prostaglandin reductase, may have been affected by its knockdown and 

contributed to the observations (10, 25). LPS-induced iNOS activity was not changed by 

either the treatments or SOCS3 knockdown in this study. These observations suggest 

possible mechanisms of NO inhibition by the extract and the 4 compounds related either to 

L-arginine supply restriction or direct NO scavenging (26).  

The evaluation of the role of SOCS3 in the anti-inflammatory activity of H. perforatum 

ethanol extract and compounds provides evidence of potential targets for select compounds 

in this extract. This could potentially be helpful in guiding the usage of related supplements. 

At the same time, as certain pathogens rely on SOCS3 activation to evade host defense, there 

may be underlying risks in using H. perforatum supplements that are rich in the noted 4 

compounds during specific conditions that require an agile adaptive immune response (27).  
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Conclusion 

The current study demonstrated that the SOCS3 activation was critical for the inhibition 

of LPS-induced PGE2 and NO by the 4 compounds in H. perforatum ethanol extract, but not 

for the inhibition of these mediators by the extract itself. Among the 4 compounds, 

pseudohypericin was identified to rely on SOCS3 activation to exert anti-inflammatory 

potential. SOCS3 independent inhibition of PGE2 and NO by H. perforatum extract and 

differential effects of the 4 compounds on decreases in inflammatory cytokines suggested 

alternative targets besides SOCS3 elevation. 
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Figure legends 

Figure 1. Expression of SOCS3 mRNA and protein. RAW 264.7 mouse macrophages 

were either treated with the transfection reagent alone (non-transfected), transfected with 

scrambled siRNA, or SOCS3 specific siRNA. Expression of SOCS3 in terms of mRNA and 

protein were assayed with or without 18 h of stimulation with 1 µg/mL LPS. Transcription of 

SOCS3 and GAPDH mRNA are shown in panel A as log transcription quantity, while 

protein quantity of SOCS3 and β-actin are shown in panel B as percentage of non-transfected 

control without LPS induction (Mean ± SEM, n=3). # and ## indicate significant (p<0.05 and 
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p<0.01) change with LPS stimulation, while * and ** indicate significant (p<0.05 and p<0.01) 

difference compared to non-transfected cells with the same LPS induction. 

Figure 2. LPS-induced macrophage production of PGE2 and NO. Non-transfected, 

scrambled siRNA transfected, and SOCS3 siRNA transfected RAW264.7 macrophages were 

treated with DMSO vehicle control, H. perforatum extract at 30 µg/mL, the 4 compounds (P: 

pseudohypericin at 0.08 µM, Q: quercetin at 0.38 µM, A: amentoflavone at 0.03 µM, C: 

chlorogenic acid at 0.58 µM as in 30 µg/mL extract), and quercetin positive control at 10 µM. 

LPS-induced PGE2 (panel A) and NO (panel B) production are shown as percentage of non-

transfected control with LPS induction (Mean ± SEM, n=3). The 100% levels for PGE2 and 

NO were 4.54 ± 0.56 ng/mL and 24.1 ± 0.98 µM. * and ** highlight significant (p<0.05 and 

p<0.01) difference compared to non-transfected cells treated with DMSO vehicle control. # 

and ## indicate significant (p<0.05 and p<0.01) difference between SOCS3 knockdown cells 

and those without knockdown but receiving the same treatment. 

Figure 3. LPS-stimulated macrophage inflammatory cytokine production. Non-

transfected, scrambled siRNA transfected, and SOCS3 siRNA transfected RAW264.7 

macrophages were treated with DMSO vehicle control, H. perforatum extract at 30 µg/mL, 

and the 4 compounds (P: pseudohypericin at 0.08 µM, Q: quercetin at 0.38 µM, A: 

amentoflavone at 0.03 µM, C: chlorogenic acid at 0.58 µM). LPS-induced cytokines IL-1β 

(panel A), IL-6 (panel B), and TNF-α (panel C) production are shown as percentage of non-

transfected control with LPS induction (Mean ± SEM, n=3). The 100% levels for IL-1β, IL-6, 

and TNF-α were 488 ± 13 pg/mL, 12.6 ± 4.8 ng/mL, and 9.0 ± 0.2 ng/mL, respectively. * and 

** highlight significant (p<0.05 and p<0.01) difference compared to non-transfected cells 
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treated with DMSO vehicle control. ## indicates significant (p<0.01) difference between 

SOCS3 knockdown cells and those without knockdown but receiving the same treatment. 

Figure 4. LPS-induced PGE2, NO, IL-1β, and TNF-α production by macrophages. Non-

transfected, scrambled siRNA transfected, and SOCS3 siRNA transfected RAW264.7 

macrophages were treated with DMSO vehicle control and different combinations of the 4 

compounds (P: pseudohypericin at 0.08 µM, Q: quercetin at 0.38 µM, A: amentoflavone at 

0.03 µM, C: chlorogenic acid at 0.58 µM). LPS-induced PGE2 (panel A), NO (panel B), IL-

1β (panel C), and TNF-α (panel D) production are shown as percentage of non-transfected 

control with LPS induction (Mean ± SEM, n=3). The 100% levels for PGE2, NO, IL-1β, and 

TNF-α were 3.7 ± 0.08 ng/mL, 23.7 ± 1.04 µM, 395 ± 10 pg/mL, and 11.7 ± 0.4 ng/mL, 

respectively. * and ^ highlight significant (p<0.05 and p<0.01) difference compared to non-

transfected cells treated with DMSO vehicle control. # and ## indicate significant (p<0.05 

and p<0.01) difference between SOCS3 knockdown cells and those without knockdown but 

receiving the same treatment. 

Figure 5. COX-2, iNOS, and SOCS3 protein expression. Non-transfected, scrambled 

siRNA transfected, and SOCS3 siRNA transfected RAW264.7 macrophages were treated 

with DMSO vehicle control, H. perforatum extract at 30 µg/mL, and the 4 compounds (P: 

pseudohypericin at 0.08 µM, Q: quercetin at 0.38 µM, A: amentoflavone at 0.03 µM, C: 

chlorogenic acid at 0.58 µM) with 1 µg/mL LPS induction. Non-transfected cells were also 

treated with DMSO without LPS and quercetin positive control at 100 µM with LPS. COX-2 

(panel A) and SOCS3 (panel C) protein abundance after an 8 h treatment, as well as iNOS 

(panel E) and SOCS3 (panel G) protein abundance after a 24 h treatment are shown as 
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percentage of non-transfected DMSO vehicle control with LPS induction (Mean ± SEM, 

n=3). * and ** highlight significant (p<0.05 and p<0.01) difference compared to non-

transfected DMSO control with LPS stimulation. Panels B, D, F, and H respectively 

demonstrate a representative experiment showing the COX-2 (8h) and SOCS3 (8h), iNOS 

(24h), and SOCS3 (24h) expression levels identified with Western blotting in single cultures. 

(ND=not determined) 

Figure 6. Enzyme activities of COX-2 and iNOS. Non-transfected, scrambled siRNA 

transfected, and SOCS3 siRNA transfected RAW264.7 macrophages were treated with 

DMSO vehicle control, H. perforatum extract at 30 µg/mL, and the 4 compounds (P: 

pseudohypericin at 0.08 µM, Q: quercetin at 0.38 µM, A: amentoflavone at 0.03 µM, C: 

chlorogenic acid at 0.58 µM) with 1 µg/mL LPS induction. Enzyme activity of LPS-induced 

COX-2 (panel A) and iNOS (panel B) an 8 h or 24 treatment are shown as percentage of 

non-transfected DMSO vehicle control (Mean ± SEM, n=3). The 100% levels for LPS-

stimulated COX-2 and iNOS enzyme activity were 22.1 ± 1.7 and 4.8 ± 0.4 nM/min/mL. 

Without LPS induction, COX-2 and iNOS activity were 3.7 ± 1.3 and 0.3 ± 0.2 nM/min/mL, 

respectively. * and ** highlight significant (p<0.05 and p<0.01) difference compared to non-

transfected DMSO control.  
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Figures and tables 

Table 1. Quantification of the 4 compounds in H. perforatum extract. 

Compound Concentration (µM)* Original 4 component system 
(µM)** 

 
 
Pseudohypericin 

 

 
 

0.08 ± 0.02 

 
 

0.03 

 
Quercetin 

 

 
0.38 ± 0.17 

 
0.07 

 
 
 
Amentoflavone 

 

 
 
 

0.03 ± 0.01 

 
 
 

0.08 
 

 
 
Chlorogenic acid 

 

 
 

0.58 ± 0.16 

 
 

0.2 

Compounds quantified by LC-MS-UV analysis. Amount of each of the 4 compounds is 

shown as mean concentration in 30 µg/mL extract ± SEM. 

  * Detected in 30 µg/mL H. perforatum ethanol extract. 

** Used in Hammer et al (2008 and 2010).  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 6.  
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Supplemental Figure 1. Viability of RAW 264.7 macrophages. Non-transfected, 

scrambled siRNA transfected, and SOCS3 siRNA transfected RAW264.7 macrophages were 

treated with DMSO vehicle control, H. perforatum extract at 30 µg/mL, the 4 compounds (P: 

pseudohypericin at 0.08 µM, Q: quercetin at 0.38 µM, A: amentoflavone at 0.03 µM, C: 

chlorogenic acid at 0.58 µM), and cytotoxic ursolic acid positive control (12.5 and 25 µM). 

Optical density measured by MTS assay after 24 h of treatment is shown in percentage of 

non-transfected DMSO vehicle control (Mean ± SEM, n=3). The 100% level was 1.95 ± 0.06. 

* and ** highlight significant (p<0.05 and p<0.01) difference compared to non-transfected 

DMSO control.  
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CHAPTER 5. THE IMMUNO-REGULATORY IMPACT OF ORALLY-

ADMINISTERED HYPERICUM PERFORATUM EXTRACT ON BALB/C MICE 

INFECTED WITH H1N1 INFLUENZA A VIRUS 

Nan Huang, Navrozedeep Singh, Kyoungjin Yoon, Christie M. Loiacono, Marian L. 

Kohut, and Diane F. Birt
 

 

Abstract 

H. perforatum ethanol extract has been found to inhibit lipopolysaccharide-induced 

macrophage production of inflammatory mediators and cytokines. Therefore, it may be able 

to protect the host from excessive inflammation during influenza infection. In the current 

study, the immune-regulatory effect of H. perforatum extract was evaluated in 

influenza/PR/8/34 H1N1 virus infected A549 lung epithelial cells and BALB/c mice. In 

A549 cells, the extract significantly inhibited influenza induced monocyte chemotactic 

protein (MCP)-1 and interferon-γ induced protein 10 kD (IP-10), but dramatically increased 

interleukin-6 (IL-6). In mice infected with 328 HA units of H1N1 influenza (high dose),daily 

oral treatment of 110 mg/kg H. perforatum extract increased lung viral titer, bronchoalveolar 

lavage (BAL) pro-inflammatory cytokine and chemokine levels, and the infiltration of pro-

inflammatory cells in the lung 5 days post high dose H1N1 influenza virus infection, as 

compared to ethanol vehicle treated mice. Transcription of suppressor of cytokine signaling 3 

(SOCS3) was increased by H. perforatum extract both in A549 cells and BALB/c mice, 

which could have interrupted anti-viral immune response and thus led to the inefficient viral 

clearance and increased lung inflammation. H. perforatum treatment resulted in minor 

improvement in lung index and viral titer without affecting body weight when mice were 
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infected with a lower dose of ~0.5 HA units and H. perforatum was applied in either early or 

later phase of infection (low dose and late phase). In conclusion, the current study showed 

that SOCS3 elevation by H. perforatum may cause impaired immune defense against 

influenza infection. Further studies will be needed to assess H. perforatum extract‟s impact 

on influenza infection morbidity and mortality. 

Introduction 

Influenza virus has been a major public health burden for centuries, affecting 10-20% of 

the general population and causing approximately 36,000 deaths annually in the United 

States (1-2). Despite enormous vaccination efforts, flu seasons persist today and a much 

feared potential outbreak of pandemic flu like the one in 1918 could result in a mortality of 

over 80 million according to statistical predictions using regression analysis (1). Upon 

contracting influenza virus, the host immune system is activated to contain and resolve the 

infection. Respiratory epithelial cells secrete a wide variety of pro-inflammatory cytokines 

and chemokines that attract and activate innate immune cells, which subsequently initiate 

adaptive immune mechanisms to clear viral particles (3-5). Although cytokines can inhibit 

viral replication and are critical for the immune response, pro-inflammatory cytokines and 

inflammatory immune cells also contribute to pneumonia and tissue damage (6). Certain 

strains of influenza virus, such as H1N1 and H5N1, are more likely to induce excessive 

cytokine release and immune cell exudation (4). This so-called „cytokine storm‟ scenario, 

features elevated levels of cytokines and chemokines such as tumor necrosis factor (TNF)-α, 

interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, and interferon (IFN)-γ, as well as 

the exudation of monocytes, macrophages, and neutrophils. „Cytokine storm‟ causes tissue 
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damage, impairs normal mucosal membrane and may induce airway blockage, making it a 

risk factor for the higher mortality associated with these virulent strains (7-8). Therefore, 

alleviating inflammation during influenza infection could potentially be beneficial.  

Hypericum perforatum is a perennial medicinal plant primarily used by patients with 

depression disorders (9). Its ethanol extracts have also been shown to have anti-viral and 

anti-inflammatory activities (10-11). Our previous research demonstrated that H. perforatum 

ethanol extract inhibited LPS-induced macrophage production of inflammatory mediators 

including prostaglandin E2 (PGE2) and nitric oxide (NO). The objective of this study was to 

determine whether H. perforatum extract can inhibit influenza-stimulated pro-inflammatory 

cytokine and chemokine levels.  

Suppressor of cytokine signaling 3 (SOCS3) is an intracellular negative regulator of the 

Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway 

(12). Its function has been described as inhibitory against inflammation because it inhibits the 

JAK-STAT, mitogen-activated protein kinase (MAPK) and toll-like receptor (TLR) 

pathways directly or/and indirectly (13-15). Some evidence suggests a role of SOCS3, in IL-

6 signaling (16). IL-6, which usually promotes pro-inflammatory TNF-α and IL-12 

production in LPS-induced macrophages, was found to inhibit these cytokines when the 

expression of SOCS3 gene was absent. Previously, we found that SOCS3 was elevated by 

treatment of macrophages with H. perforatum extract, and this elevation may partially 

account for the observed anti-inflammatory potential of four major active compounds in the 

extract. However, recent studies suggested that H1N1 virus suppressed the innate immune 

response by increasing SOCS3 expression and the subsequent JAK-STAT signaling 
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inhibition in lung epithelial cells (17). If this observation reflects what is seen in vivo, SOCS3 

elevation may allow higher viral titer and less efficient viral clearance. 

In the current study, we addressed the impact of H. perforatum ethanol extract on H1N1 

influenza infected lung epithelial cells and BALB/c mice, with particular focus on cytokine 

production, inflammatory damage, viral titer, and SOCS3 gene alteration. 

Material and methods 

H. perforatum extract. Procurement and extraction of H. perforatum plant material were as 

previously described (18). In brief, 6 g of dry H. perforatum (Accession PI 325351) plant 

material, acquired from the North Central Regional Plant Introduction Station (NCRPIS) 

(Ames, IA) of the U.S. Department of Agriculture, Agricultural Research Service 

(USDA/ARS) was ground and extracted with 500 mL of 95% ethanol using Soxhlet 

extraction. The extract was dried and weighed before it was dissolved in pure DMSO or 50% 

ethanol (both from Sigma, St. Louis, MO). Known chemical constituents were quantified and 

the extract was stored at -20 ºC in the dark. 

A549 epithelial cells. A549 human bronchial epithelial cells were acquired from American 

Type
 
Culture Collection (ATCC, Manassas, VA). Cells were maintained in F12K media 

supplemented with 10% fetal bovine serum (FBS), 100 IU/mL penicillin/streptomycin, 0.25 

µg/mL amphotericin, and 50 µg/mL gentamicin (Invitrogen, Carlsbad, CA).  

H1N1 influenza virus. H1N1 A/PR/8/34 virus was acquired from ATCC and prepared in 

saline at the stock concentration of 8194 hemoglutinin units (HAU), equivalent to 10
13.3

 EID 

(egg infection dose 50%)/mL.  
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A549 cell viral challenge and treatments. A/PR/8/34 H1N1 virus was diluted to 10
11.3

 

EID/mL, or 8.2 HAU in serum free media, and applied to A549 cells at 1 × 10
6
 cell/well in 

24 well plates, or 4 × 10
6
 cell/well in 6 well plates. The volume of virus-containing media 

was 50 µL/well for 24 well plates and 200 µL for 6 well plates. After 1 hr of incubation, 450 

µL (24 well plates) or 1.8 mL (6 well plates) of media containing DMSO vehicle control or 

H. perforatum extract were added to each well and maintained until the end of the 3 hr or 24 

hr experiments, when the supernatant or cells were collected for further analysis. 

ELISA for A549 cell culture supernatant. Collected supernatant samples were subjected to 

enzyme-linked immunosorbent assay (ELISA) to determine interleukin-6 (IL-6), tumor 

necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and interferon induced 

protein 10kD (IP-10) levels. ELISA kits for these cytokines were used following 

manufacturer‟s instruction, after diluting samples to concentrations within the range of 

standard curves (BD Biosciences, Franklin Lakes, NJ). 

Extraction of A549 cell RNA and gene transcription measurements. A549 cells were 

harvested for RNA extraction using the Trizol method (18). RNA was subsequently purified 

with RNeasy kit (Qiagen, Valencia, CA) and reverse-transcribed into cDNA using an iScript 

cDNA synthesis kit, followed by gene transcription quantification using an iCycler coupled 

with a MyiQ optical module (all from BioRad, Hercules, CA). Primers used for this 

quantitative real-time polymerase chain reaction (qRT-PCR) were obtained from Integrated 

DNA Technologies, Inc. (Coralville, IA). The SOCS3 primer sets were 5‟-ATT CGC CTT 

AAA TGC TCC CTG TCC-3‟ (forward) and 5‟- TGG CCA ATA CTT ACT GGG CTG 

ACA-3‟ (reverse); 5‟-TCG ACA GTC AGC CGC ATC TTC TTT -3‟ (forward) and 5‟- ACC 
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AAA TCC GTT GAC TCC GAC CTT-3‟ (reverse) for the housekeeping gene 

glyceraldehydes 3-phosphate dehydrogenase (GAPDH).  

Mice and gavage treatments. All animal usage procedures were approved by the Iowa State 

University Committee on Animal care. Male BALB/c mice aged between 6-10 weeks were 

used in this study (Charles River Laboratory, MA). Upon arrival, mice were allowed to 

acclimate to the environment for 1+ week before being subjected to the experiments. Mice 

were assigned into different treatment groups randomly with body weight as a block before 

treatments began. Mice were kept in individual cages at 25 °C and 40% humidity under 12 hr 

light/dark cycles, with free access to normal rodent chow diet (Harlan Teklad 2014) and tap 

water. Daily treatments of 5% ethanol vehicle control, or H. perforatum extracts at different 

concentrations in 150 µL of 5% ethanol were administrated orally using 18 gauge animal 

feeding needles (Cadence Science, Staunton, VA). In the 6 day and 5 day infection studies, 

gavage was conducted at the same time daily from one day before infection (day -1) to the 

day before animal sacrifice (day 5 and day 4). Gavage was administrated from day 5 post 

infection to the day before the necropsy in the 10 day infection study (day 5 to day 9). 

Toxicity of H. perforatum extract in BALB/c mice. Toxicity of the extract was tested by 

gavaging mice with 5% ethanol, 60 mg/kg, 110 mg/kg, or 220 mg/kg body weight of H. 

perforatum ethanol extract daily for 3 wks. Body weight, food and water consumption were 

monitored daily over the process, with heart, liver, spleen, kidney, and stomach weight 

recorded at the end of the study during necropsy.  

Mouse influenza viral infection and health monitoring. Mice were infected with A/PR/8/11 

H1N1 influenza virus on day 0 of each study. The procedure involved anesthesia with 
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isofurane followed by inoculation of 30 µL virus in saline intranasally. Viral doses were 10
9.0

 

EID/mL (0.46 HAU) for the 6 day infection study, 10
11.9

 EID/mL (328 HAU) for the 5 day 

study, and 10
9.2

 EID/mL (0.55 HAU) for the 10 day study. Daily records of mouse body 

weight, food and water consumption were collected, except for on the last day of the 5 day 

infection study and on the last 3 days of the 10 day infection study, when food and water 

were supplied in petri dish to allow the sick mice better access. 

Mouse illness score assessment. Mice were evaluated by an observer blinded to the 

treatments for their sickness condition after infection using a scoring system adopted from 

Murphy et al., which is based on ruffled hair/ hunch back, eye and nose redness, and 

unresponsiveness (19). Each of the three signs was given a score of 0 to 2 according to 

severity. The average of scores in three categories was used as the overall illness score for 

each individual mouse. 

Necropsy, bronchoalveolar lavage collection. Mice were euthanized at the end of the studies 

using carbon dioxide. Blood was collected in the 6 day infection study through heart 

puncture. Bronchoalveolar lavage (BAL) fluid was collected and processed for subsequent 

flow-cytometry, cytokine, chemokine, and NO assays as described by Sim et al. (20).  

BAL cytokine and nitric oxide measurement. BAL supernatant, collected after centrifugion, 

was analyzed for cytokine and chemokine levels on a Luminex platform (Bio-Rad) with a 

MILLIPLEX map mouse 32-cytokine/chemokine multiplex kit (Millipore, Billerica, MA). 

The panel included eotaxin, granulocyte colony-stimulating factor (G-CSF), granulocyte 

macrophage clony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), IL-1α, IL-1β, IL-2, 

IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-10, 



www.manaraa.com

134 

 

keratinocyte-derived cytokine (KC), leukemia inhibitory factor (LIF), LPS-stimulated CXC 

chemokine (LIX), M-CSF, MCP-1, monokine induced by IFN-γ (MIG), macrophage 

inflammatory protein-1α (MIP-1α), MIP-1β, MIP-2, regulated upon activation, normal T-cell 

expressed, and secreted cytokine (RANTES), TNF-α, and vascular endothelial growth factor 

(VEGF). NO was measured using Greiss reagent (Promega, Madison, WI) as previously 

described (21). 

BAL cell population characterization. BAL cells were stained for conjugated antibodies 

against different surface proteins. Antibodies used included FITC-anti-mouse CD8b, Alexa 

Fluo 647-anti-mouse CD11b, and PE-anti-mouse Gr1 (eBioscience San Diego, CA). Labeled 

samples, along with isotype controls, were subject to BD FACSCanto flow cytometer 

analysis (BD Biosciences). Cell populations were characterized according to forward scatter, 

side scatter, and fluorescent signals using FlowJo software (Tree Star, Ashland, OR). 

Specifically, CD11b
+
, GR1

+
, and high side scatter (SSC) BAL cells were considered as 

neutrophils in the 6 day study, while cytotoxic T cells were CD8b
+
 with low SSC, and 

mononuclear phagocytes being GR1
intermetiate

 with low SSC. In the 5 day high viral dose study, 

neutrophils were CD11b
+
 and GR1

+
 with high SSC; cytotoxic T cells were CD8b

+
 with low 

SSC; induced macrophages were CD11b
+
and GR1

-
 with high auto-fluorescent; resident 

alveolar macrophages were CD11b
-
 and GR1

-
 with high auto-fluorescent; inflammatory 

monocytes were CD11b
+
 and GR1

intermediate
  with low SSC. 

Lung index, histopathology score, and viral titer quantification. Lung was harvested from 

the mice and weighed in the 6 day and 5 day infection studies. Lung index, a crude 

measurement of lung inflammation during infection, was calculated using the formula: (lung 
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weight)/(body weight) × 100 (22). In the 10 day infection study, 4 lobes of lung were fixed in 

buffered formalin (Fisher Scientific, CA), followed by paraffin embedding. Approximately 5 

µm thick sections were stained with hematoxylin-eosin and inspected under a light 

microscope. Lung histophathological lesions, characterized by necrosis, degeneration, 

hyperplasia, and infiltration, were evaluated and scored blinded to treatments using a 

standards previously used by Sim et al. (20). Lung viral titer was determined using qRT-PCR 

using specific primers against conservative nucleoprotein gene as described in detail by Sim 

et al. (20). 

Lung RNA extraction and gene transcription quantification. One lobe of lung from each 

mouse was snap-frozen upon necropsy and ground in liquid nitrogen. The ground tissue was 

combined with Trizol reagent (Invitrogen) and homogenized. Trizol method and RNeasy 

(Qiagen) purification procedures were subsequently applied to obtain purified RNA from 

lung tissue. RNA samples were then reverse-transcribed into cDNA using an iScript cDNA 

synthesis kit (BioRad). cDNA samples were normalized to the same 100 ng/mL 

concentration before subject to gene transcription quantification in iCycler coupled with a 

MyiQ optical module (BioRad). Primers used were 5‟-ATT CAC CCA GGT GGC TAC AG-

3‟ (forward) and 5‟-GCC AAT GTC TTC CCA GTG TT-3‟ (reverse) for SOCS3, as well as 

5‟-CAA TGT GTC CGT CGT GGA T-3‟ (forward) and 5‟-AGC CCA AGA TGC CCT TCA 

G-3‟ (reverse) for GADPH. 

Statistical analysis. Measured A549 cell cytokine production and mRNA transcription levels 

from 3 replicates of culture plates in the same experiment were log-transformed and analyzed 

using ANOVA as a randomized complete block design with cell culture plates as fixed 
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blocks. All treatments with or without viral infection were compared to the media + DMSO 

vehicle control. Animal study data that was repeatedly measured, such as body weight, food 

and water intake, illness score, were analyzed using a mixed ANOVA model that included an 

unspecified structure for the day to day repeat correlation. For post-hoc tests, treatments were 

compared to each other on each day after Tukey adjustment. Lung index, cell population, 

lung lesion score, log-transformed cell viral titer and lung gene transcription levels were 

analyzed using ANOVA test, followed by multiple comparisons between individual 

treatment groups with Tukey adjustment. 

Results 

Cytokine released by A549 lung bronchial epithelial cells. Production of IL-6, IP-10, TNF-α, 

and MCP-1 by A549 cells were drastically stimulated 24 hrs after H1N1 virus challenge as 

shown in Figure 1. In comparison to DMSO vehicle control, H. perforatum treatment 

significantly increased IL-6 production (panel A) in cells without virus infection, resulting in 

a level even higher than that of infected vehicle treatment. Virus-induced TNF-α (panel B), 

IP-10 (panel C), and MCP-1 (panel D) production were inhibited by H. perforatum extract. 

The background levels of IP-10 and MCP-1 were also decreased by H. perforatum extract. 

SOCS3 gene transcription in A549 cells. SOCS3 gene transcription was measured in A549 

bronchial epithelial cells under the treatments of DMSO vehicle or 30 µg/mL H. perforatum 

extract, with and without H1N1 virus infection. After 3 hrs of treatment, H1N1 influenza 

virus significantly elevated SOCS3 transcription level, which was strongly amplified by the 

extract, as indicated by Figure 2. SOCS3 was not changed by either the treatments or virus 
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infection at 24 hr time point. GAPDH, used as a housekeeping reference gene, remained 

stable across the treatments.  

In vivo toxicity of H. perforatum extract. Mice gavaged with 5% ethanol vehicle control, 60 

mg/kg H. perforatum extract, 110 mg/kg extract, and 220 mg/kg extract were monitored over 

the 3 week treatment regimen for their body weights and daily food consumption. No 

difference in bodyweight or food intake was found between these groups, neither did they 

differ in liver, kidney, spleen, stomach or intestine weight at the end of the study (data not 

shown). No apparent skin lesion or behavior abnormity was observed in H. perforatum 

treated groups. 

Body weight, food and water consumption, and illness score of mice in the 6 day infection 

study. Daily records of body weight (Figure 3, panel A), food (Figure 3, panel B) and water 

(Figure 3, panel C) consumption are shown from day -1 to day 6, while mouse illness score 

are shown from day 1 to day 6 (panel D). Body weight of infected mice started to drop on 

day 3 and became significantly lower than the non-infected group by day 4. By day 6, the 

discrepancy between the infected and non-infected mice was ~2.7 g, or ~12% initial body 

weight. Food and water consumption, measured by daily food and water disappearance, had 

similar trends as body weight, with differences between infected and non-infected mice 

becoming significant after day 4 and day 3, respectively. Infected mice treated with vehicle 

and H. perforatum extract had the same body weight, food and water intake over the course 

of the study. Illness score remained 0 during the study in the non-infected group, while the 

scores for the infected groups became significantly higher than 0 at day 4. The H. perforatum 
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treated group had a lower illness score than the vehicle control treated group, although the 

difference was not statistically significant due to high variability (p=0.09). 

Lung index and viral titer in the 6 day infection study. The lung index of the mice at the end 

of the study are shown in Figure 4, panel A. The lung index of the infected vehicle group 

was significantly higher than that of the non-infected group, while the H. perforatum group 

was not significantly different from either group. Lung viral titer was measured for each 

mouse. The results, depicted in panel B, indicated relatively higher viral titer in the two 

infected groups, with no significant difference between them. 

Serum inflammatory cytokines in the 6 day infection study. Inflammatory cytokines IL-6 

and IL-1β in mouse serum were measured using ELISA and demonstrated in Figure 5. IL-6 

(panel A) was elevated by H1N1 influenza viral infection and the H. perforatum treated 

group had a significantly lower IL-6 level in comparison to the infected vehicle group. No 

difference was found between the three groups regarding serum IL-1β level.  

BAL inflammatory cytokines and NO in the 6 day infection study. BAL samples collected 

from the mice were subject to multiplex analysis, and the results are shown in Table 1. All 

cytokines and NO in the panel, except for eotaxin, IL-1α, IL-2, IL-3, IL-7, IL-9, and IL12 

(p40), were significantly elevated after influenza infection. IL-2 was slightly decreased after 

infection, although its level was very low (< 2 pg/mL). IL-6 was higher in the H. perforatum 

extract group compared to infected vehicle group. The two infected groups did not differ 

from each other in other cytokines or NO. 
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BAL cell population in the 6 day infection study. Cells in the BAL fluid were analyzed 

using flow-cytometry. Figure 6 shows the total cell counts (panel A) and percentage of BAL 

cells being neutrophils (panel B), CTLs (panel C), as well as mononuclear phagocytes 

(panel D). Infection with influenza increased the total number of cells in the BAL, but the H. 

perforatum treated mice seemed to have fewer cells than the vehicle treated mice, although 

not statistically significant. The percentages of neutrophils, mononuclear phagocytes, and 

CTLs increased when compared to the non-infected mice. H. perforatum treatment increased 

mononuclear phagocyte percentage in comparison to ethanol vehicle after infection. 

Body weight, food and water consumption, and illness score in the 5 day infection study 

(high viral dose). Aiming to study the effect of H. perforatum on mice with severe influenza 

symptoms, a high viral dose of 10
11.9

 EID/mL was used to inoculate the animals in the 5 day 

infection study. Daily body weight, food and water intake, and illness score measurements 

throughout the study are shown in Figure 7. Due to the higher viral dose, significant body 

weight drop appeared just 2 days after infection and resulted in over 20 % (5 g) weight lost at 

the end of the 5 day study (panel A). But the two infected groups were not significantly 

different in body weight. Records of food (panel B) and water (panel C) intake on day 5 

were not collected because moistened diets were given in petri dishes to the animals that 

were too weak to reach food on the cage covers. Food intake was lower in the infected 

groups between day 2 post infection and the end of the study. Water intake was similar 

throughout the study between the groups. More water disappeared in the infected groups on 

day 0 and the H. perforatum group had more water disappearance on day 1. Mouse illness 

scores for the infected groups were significantly higher than that of the non-infected group 
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from day 2 through day 5, with no difference between mice treated with ethanol vehicle and 

H. perforatum extract (panel D). 

Lung index and viral titer in the 5 day infection study (high viral dose). Lung index and 

H1N1 viral titer for each mouse were measured at the end of the 5 day study and are shown 

in Figure 8. Both lung index (panel A) and viral titer (panel B) of the mice challenged with 

influenza virus were elevated comparing to the non-infected group. Mice treated with H. 

perforatum extract had significantly higher viral titer than that of the vehicle treated ones 

after H1N1 infection, while the lung index were the same in the two infected groups, both 

higher than that in the non-infected group.  

BAL inflammatory cytokines and NO in the 5 day infection study (high viral dose). Table 

2 demonstrates the cytokines and NO levels in lung BAL measured using multiplex. Except 

for IL-9, IL12 (p40), and LIX, all cytokines plus NO were significantly elevated after 

influenza virus challenge. H. perforatum treatment resulted in higher levels of a variety of 

inflammatory cytokine and NO when compared to the infected vehicle control. Cytokines 

increased by H. perforatum treatment included eotaxin, G-CSF, GM-CSF, M-CSF, IL-6, IL-

12(p70), IL-13, IL-15, LIF, MCP-1, and MIP-2. At the same time, IP-10 was found to be 

reduced under by H. perforatum treatment. 

BAL cell population in the 5 day infection study (high viral dose).  Total BAL cell number 

(panel A) and neutrophil cell percentage (panel B) were significantly higher in the infected 

groups than in the non-infected groups, as shown in Figure 9. The H. perforatum treated 

group had more neutrophils and inflammatory monocytes than the infected-vehicle group, 

with a lower percentage of CTLs (panel C). Although no significant difference was found 
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between all three groups in the aspect of induced macrophage percentage (panel D), the 

infected groups had higher numbers of these cells due to increased total cell count. The H. 

perforatum treated mice had a slightly higher number of inflammatory macrophage than the 

vehicle treated group. Resident macrophages accounted for a lower portion of BAL cells in 

the infected groups than in the non-infected group, but were not different between the two 

infected groups (panel E).Inflammatory monocyte number was dramatically elevated in the 

infected groups, with the H. perforatum group higher than the vehicle group (panel F). 

Body weight, food and water consumption, and illness score in the 10 day infection study. 

In order to study whether administrating H. perforatum extract during later phase of 

influenza infection could alleviate inflammatory lung lesion, a 10 day infection study was 

conducted, with gavage beginning at day 5 post infection. Daily records of body weight 

(Figure 10, panel A) from day 0 until day 10, food (Figure 10, panel B) and water (Figure 

10, panel C) consumption are shown from day 0 to day 7. The lack of diet and water 

consumption data after day 7 was due to animals being provided these in petri dishes in the 

cage to allow access. Mouse illness score on day 10 is shown in panel D. Body weight of 

these infected mice began decreasing progressively by day 3 and reached ~ 16 g on average 

at the end of the study. No difference in either endpoint, except for food intake on day 6, was 

noted between the two treatments. H. perforatum treated mice consumed lower amount of 

diet on day 6, but returned to the same level as the vehicle control group on day 7. 

Lung lesion score and viral titer in the 10 day infection study. Lung lesion score and H1N1 

viral titer for each mouse was measured at the end of the 10 day study and shown in Figure 

11. Lung lesion score was not significantly different between the two groups, while lung viral 
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titer of mice treated with H. perforatum extract was slightly lower than that of the vehicle 

group. 

Expression of SOCS3 gene in BALB/c mouse lung. RNAs from lungs collected from the 5 

day and 10 day studies were quantified for SOCS3 gene expression, as demonstrated in 

Figure 12. SOCS3 transcription was elevated in the infected groups 5 days post infection, 

with the H. perforatum treated mice showed higher level of SOCS3 mRNA compared to 

those receiving vehicle treatment. By day 10, both infected groups had the same SOCS3 

expression level. GAPDH housekeeping gene transcription was identical in all groups and at 

all time points. 

Discussion 

Our prior studies on the anti-inflammatory potential of H. perforatum were conducted 

using the RAW 264.7 mouse macrophage model (18). But when it comes to influenza, 

respiratory epithelial cells are the target of infection and where the initiation of an immune 

response occurs (23). MCP-1 and IP-10 are released by lung epithelial cells to recruit 

monocytes, NK cells and neutrophils, while IL-6 regulates the innate immune cell functions 

through the IL-6 receptor (IL-6R) (24). In contrast to our prior observation in 

lipopolysaccharide (LPS)-induced macrophages, we found that the H. perforatum extract 

drastically increased IL-6 production by A549 cells, with or without virus stimulation 

(Figure 1). LPS-induced IL-6 in macrophages was decreased by H. perforatum treatment in 

our previous study (Huang et al, unpublished), and decreasing IL-6 was found to be 

important for the anti-depressive efficacy of H. perforatum treatment in rodents (25-26). At 

the same time, influenza-induced TNF-α, MCP-1 and IP-10 production by epithelial cells 



www.manaraa.com

143 

 

were decreased by the extract, suggesting anti-inflammatory activity similar to what was 

observed in macrophages. 

Influenza induced SOCS3 elevation in A549 cells shortly after infection has been reported 

by Pauli et al. and described as a mechanism through which the virus may compromise innate 

immune response (17, 27).  We observed similar results in the current study, as H1N1 virus 

significantly increased SOCS3 gene transcription 3 hrs post infection. H. perforatum extract 

induced an even higher level of SOCS3 transcription, with or without influenza infection 

(Figure 2). The concurrence of SOCS3 and IL-6 elevation is likely to be connected, as the 

IL-6R signaling depends on JAK-STAT and SOCS3 over-expression was shown to associate 

with over-production of BAL IL-6 in mouse lung (28). The divergent changes in different 

cytokines could be attributed to the dependence of IL-6 release on the activation of NF-κB, 

which was not inhibited by H. perforatum treatment, while IP-10 and MCP-1 production are 

activated by the IFN-γR/IL-6R-JAK-STAT pathway, which was inhibited by SOCS3. It 

should be noticed that TNF-α, a primarily inflammatory cytokine produced by macrophages, 

was only released by epithelial cells at a very low level even with virus infection. Whether 

IL-6 over-production was directly induced by H. perforatum or indirectly as a compensation 

for the interfered IL-6R signaling cascade remains unknown. 

The animal studies provided information regarding the overall impact of H. perforatum 

treatment during influenza infection. When the viral dose was low and illness was mild, no 

significant change in body weight, food and water consumption of mice was seen in the H. 

perforatum treated group (Figure 3).. BAL IL-6 was elevated by H. perforatum treatment 

(Table 1), consistent with the A549 cell response described above. Because macrophage and 
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monocyte infiltration usually reach peak levels between 5-10 days post infection, the higher 

percentage of BAL lung mononuclear phagocyte found in H. perforatum treated mice may 

indicate a shift of phagocyte exudation time line or an overall larger recruited phagocyte 

population (Figure 6)(29-31). Overall, H. perforatum treatment was not ameliorating flu 

infection when infection viral dose was low. 

Our next effort was to increase viral dose to inflict more severe flu conditions in mice in 

anticipation of being able to see more significant impact of the H. perforatum extract. Under 

this high viral dose (>50% mortality dose), mice became sick earlier and demonstrated 

steeper body weight lost in the 5 day infection study (Figure 7). Although there was a trend 

of lower body weight and food intake for the H. perforatum group, the 5 day duration was 

not long enough to show any significant effect. Interestingly, lung viral titer was significantly 

higher in the mice that received H. perforatum, suggesting less efficient viral clearance 

(Figure 8). BAL cell population at the end of the 5 day study indicated higher amount of pro-

inflammatory neutrophils macrophages, and monocytes, and lower amount of CTLs in the H. 

perforatum treatment group (Figure 9). This profile, together with the increase of most major 

pro-inflammatory BAL cytokines, chemokines and NO, indicated more severe inflammation 

(Table 2). The only exception was the reduction of IP-10 level in the BAL that could have 

resulted from the lower number of T cells, which stimulate IP-10 production through IFN-γ. 

Lung SOCS3 expression was found to be increased after virus infection and further 

potentiated by the H. perforatum extract. It is possible that the increased expression of 

SOCS3 by the extract inhibited innate immune response and delayed subsequent viral 

clearance by CTLs, resulting in higher viral titer by day 5 and more severe virus-induced 
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inflammation, although the majority of CTLs usually enter the lung later than this time point 

(17). Nonetheless, whether these changes in BAL reflected overall detrimental impact from 

the extract remains doubtful, especially given that neutrophils could ameliorate lung injury 

during influenza and monocyte/macrophages are important for anti-viral immunity (6, 32). 

During the early phase of influenza virus infection inflammation is critical for viral 

containment and immune activation (2). But in the later phase, once the viral load has been 

significantly decreased, anti-inflammatory intervention may help reduce tissue damage. This 

hypothesis drove us to the 10 day infection study, in which H. perforatum was not 

administrated until 5 days post infection. The histopathology evaluation did not reveal any 

lung lesion improvement associated with H. perforatum treatment. However, the viral titer 

was slightly lower in the H. perforatum treated group by day 10, which could result from its 

anti-viral activity as reported by Liu et al. (22). Other than that, our study failed to find any 

protective effect of late phase administrated H. perforatum extract against influenza 

inflammatory damage. 

In conclusion, our study revealed an immune-regulatory impact of H. perforatum extract, 

which appeared to impair immune defense rather than inhibit inflammation during influenza 

infection. Long term infection studies should be used to evaluate whether H. perforatum 

affect survival after influenza infection. On the other hand, the elevated SOCS3 associated 

with the extract deserves further investigation, as it could be either facilitating viral invasion 

by interfering with innate immune regulation. 
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Figure legends 

Figure 1. Cytokines released by A549 human bronchial epithelial cells. DMSO vehicle 

control or 30 µg/mL H. perforatum extract were applied to cells, with or without H1N1 virus 

challenge. Cytokine levels for IL-6 (A), TNF-α (B), IP-10 (C), and MCP-1 (D) after 24 hrs 

of treatment are shown as Mean ± SEM (N=3). Significant difference between vehicle and H. 

perforatum treatments are noted with * (p<0.05). 

Figure 2. SOCS3 RNA transcription profiles in A549. A549 cells were treated with 

DMSO vehicle control or 30 µg/mL H. perforatum extract, with or without H1N1 virus 

challenge. SOCS3 and GAPDH (control) expression levels 3 hrs and 24 hrs after treatment 
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are shown as log relative transcription level (Mean ± SEM, N=3). Values of each gene at the 

same time point are differentiated by individual letter labels when significant differences 

exist (p<0.05, a > b > c). 

Figure 3. Body weight, food and water consumption, and illness score of mice in the 6 

day infection study. Mice were infected with H1N1 virus on day 0 and gavaged with 5% 

ethanol vehicle control from day -1 to day 5 (N=12), or infected with H1N1 virus on day 0 

and gavaged with 110 mg/kg H. perforatum extract (N=12), or not infected by virus and 

gavaged with 5% ethanol (N=6). Daily records of body weight (A), food (B) and water intake 

(C), as well as mouse illness score (D) are shown as Mean ± SEM. Significant difference 

between non-infected and infected groups is labeled with * (p<0.05), while difference 

between infected vehicle and infected H. perforatum group is highlighted with # (p<0.05). 

Figure 4. Lung index and viral titer of mice in the 6 day infection study. Mice were 

infected with H1N1 virus on day 0 and gavaged with 5% ethanol vehicle control from day -1 

to day 5 (N=12), or infected with H1N1 virus on day 0 and gavaged with 110 mg/kg H. 

perforatum extract (N=12), or not infected by virus and gavaged with 5% ethanol (N=6). At 

the end of the study, the mouse lungs were weighed and used to calculate lung index (A), 

shown as Mean ± SEM. Lung viral titer (B) was measured using qRT-PCR, with log values 

shown as Mean ± SEM. Values without the same label are different from each other 

statistically (p<0.05, a > b > c). 

Figure 5. Mouse serum cytokine levels in the 6 day infection study. Mice were infected 

with H1N1 virus on day 0 and gavaged with 5% ethanol vehicle control from day -1 to day 5 

(N=12), or infected with H1N1 virus on day 0 and gavaged with 110 mg/kg H. perforatum 
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extract (N=12), or not infected by virus and gavaged with 5% ethanol (N=6). Serum IL-6 (A) 

and IL-1β (B) were measured using ELISA and shown as Mean ± SEM. Values without same 

label are different from each other statistically (p<0.05, a > b > c). 

Figure 6. Mouse BAL cell population in the 6 day infection study. Mice were infected 

with H1N1 virus on day 0 and gavaged with 5% ethanol vehicle control from day -1 to day 5 

(N=12), or infected with H1N1 virus on day 0 and gavaged with 110 mg/kg H. perforatum 

extract (N=12), or not infected by virus and gavaged with 5% ethanol (N=6). BAL cells were 

sorted using flow-cytometry. Total cell counts (A), percentage of BAL cells being 

neutrophils (CD11b
+
 GR1

+
 high SSC)(B), cytotoxic T cells (CD8b

+
 low SSC)(C), and 

mononuclear phagocytes (GR1
int

 low SSC)(D) are shown as Mean ± SEM for each treatment 

group. Values without same label are different from each other statistically (p<0.05, a > b > 

c). 

Figure 7. Body weight, food and water consumption, and illness score of mice in the 5 

day infection study (high viral dose). Mice were infected with H1N1 virus on day 0 and 

gavaged with 5% ethanol vehicle control from day -1 to day 4 (N=15), or infected with 

H1N1 virus on day 0 and gavaged with 110 mg/kg H. perforatum extract (N=15), or not 

infected by virus and gavaged with 5% ethanol (N=6). Daily records of body weight (from 

day -1 to day 5)(A), food (B) and water intake (C)(from day -1 to day 4), as well as mouse 

illness score (D)(from day 1 to day 5) are shown as Mean ± SEM. Significant difference 

between non-infected and infected groups is labeled with * (p<0.05), while difference 

between infected vehicle and infected H. perforatum group is highlighted with # (p<0.05). 
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Figure 8. Lung index and viral titer of mice in 5 day infection study. Mice were infected 

with H1N1 virus on day 0 and gavaged with 5% ethanol vehicle control from day -1 to day 4 

(N=15), or infected with H1N1 virus on day 0 and gavaged with 110 mg/kg H. perforatum 

extract (N=15), or not infected with virus and gavaged with 5% ethanol (N=5). Harvested 

mouse lungs were weighed and used to calculate lung index (A), shown as Mean ± SEM. 

Lung viral titer (B) was measured using RT-PCR, with log values shown as Mean ± SEM. 

Values without the same over bar label are statistically different from each other (p<0.05, a > 

b > c). 

Figure 9. Mouse BAL cell population in 5 day infection study (high viral dose). Mice 

were infected with H1N1 virus on day 0 and gavaged with 5% ethanol vehicle control from 

day -1 to day 4 (N=15), or infected with H1N1 virus on day 0 and gavaged with 110 mg/kg 

H. perforatum extract (N=15), or not infected by virus and gavaged with 5% ethanol (N=6). 

BAL cells were subject to flow-cytometry. Total cell counts (A), percentage of BAL cells 

being neutrophils (CD11b
+
 GR1

+
 high SSC)(B), cytotoxic T cells (CD8b

+
 low SSC)(C), 

induced macrophages (CD11b
+
 GR1

-
 high auto-fluorescent)(D), resident alveolar 

macrophages (CD11b
-
 GR1

-
 high auto-fluorescent)(E), and inflammatory monocytes 

(CD11b
+
 GR1

int
 low SSC)(F) are shown as Mean ± SEM for each treatment group. Values 

without same over bar label are statistically different from each other (p<0.05, a > b > c). 

Figure 10. Body weight, food and water consumption, and illness score of mice in 10 

day infection study. Mice were infected with H1N1 virus on day 0 and gavaged with 5% 

ethanol vehicle control from day 5 to day 9 (N=13), or infected with H1N1 virus on day 0 

and gavaged with 110 mg/kg H. perforatum extract (N=13). Daily records of body weight 
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(from day 0 to day 10), food and water intake (from day 1 to day 7), as well as mouse illness 

score on day 10, are shown as Mean ± SEM. Significant difference between infected vehicle 

and infected H. perforatum group is highlighted with # (p<0.05). 

Figure 11. Lung lesion score and lung viral titer 10 days infection study. Mice were 

infected with H1N1 virus on day 0 and gavaged with 5% ethanol vehicle control (N=13), or 

110 mg/kg H. perforatum extract (N=13) from day 5 to day 9. Lung pathology lesion scores 

are shown in box plots. Lung viral titer was measured using RT-PCR and shown as relative 

titer in log scale (Mean ± SEM). Values without same over bar label are statistically different 

from each other (p<0.05). 

Figure 12. RNA transcription profiles the lung of BALB/c mice. Expression levels of 

SOCS3 and GAPDH in lungs collected at the end of the 5 day infection study (high viral 

dose)(N=15 for infected groups and N=6 for non-infected group) and 10 day infection study 

(N=13 for each group) were measured and shown as log relative transcription level (Mean ± 

SEM). Values of each gene at the same time point are differentiated by individual over bar 

labels when significant differences were found (p<0.05). ND=not determined (no non-

infected group in the 10 day study). 
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Tables and figures 

Table 1. Mouse BAL cytokine and NO levels in 6 day infection study. 

Cytokines 

 

Infected vehicle 

(N=12) 
Infected H. perf 

(N=12) 
Non-infected 

(N=6) 

Statistical effect 

Infection H. perf 

Eotaxin 32.1 ± 5.6 34.1 ± 5.2 13.6 ± 11.4   

G-CSF 985.7 ± 186.4 937.6 ± 148.8 1.2 ± 0.3 *  

GM-CSF 18.2 ± 2.4 15.3 ± 2.1 1.3 ± 1.3 *  

IFN-γ 2626.7 ± 687.2 2401.6 ± 504.1 0.8 ± 0.4 *  

IL-1a 11.5 ± 1.4 11.0 ± 1.7 7.5 ± 2.7   

IL-1b 10.1 ± 0.8 10.2 ± 1.4 2.4 ± 0.7 *  

IL-2 1.5 ± 0.1 1.4 ± 0.1 2.5 ± 0.5 *  

IL-3 1.4 ± 0.1 1.4 ± 0.1 1.0 ± 0.1   

IL-4 0.8 ± 0.1 0.8 ± 0.1 0.4 ± 0.0 *  

IL-5 15.5 ± 3.8 16.1 ± 3.2 0.2 ± 0.1 *  

IL-6 933.7 ± 167.0 1424.6 ± 305.9 2.7 ± 1.3 * # 

IL-7 0.5 ± 0.1 0.5 ± 0.2 0.3 ± 0.2   

IL-9 98.9 ± 11.8 100.2 ± 12.2 69.8 ± 10.4   

IL-10 159.4 ± 48.0 128.1 ± 25.6 0.8 ± 0.3 *  

IL12(p40) 9.0 ± 1.0 7.6 ± 1.5 11.0 ± 2.9   

IL-12(p70) 10.2 ± 1.2 10.0 ± 1.4 0.0 ± 0.0 *  

IL-13 23.6 ± 2.6 21.2 ± 4.2 0.3 ± 0.2 *  

IL-15 8.2 ± 1.1 6.5 ± 1.4 1.1 ± 0.6 *  

IL-17 2.1 ± 0.2 2.1 ± 0.3 0.6 ± 0.2 *  

IP-10 2348.4 ± 0.3 2369.3 ± 0.4 5.8 ± 2.5 *  

KC 390.6 ± 38.2 353.0 ± 67.5 14.5 ± 2.7 *  

LIF 87.3 ± 15.4 82.9 ± 15.5 0.4 ± 0.1 *  

LIX 32.3 ± 9.2 20.9 ± 8.4 4.4 ± 4.4 *  

MCP-1 425.1 ± 100.6 426.4 ± 78.5 1.0 ± 0.7 *  

M-CSF 9.1 ± 1.0 7.6 ± 0.8 0.9 ± 0.6 *  

MIG 11271 ± 1444 11140 ± 1958 8.8 ± 2.4 *  

MIP-1a 34.5 ± 3.7 33.0 ± 4.3 4.8 ± 1.6 *  

MIP-1b 302.7 ± 55.0 299.8 ± 54.8 1.8 ± 0.9 *  

MIP-2 75.6 ± 11.2 61.2 ± 4.7 3.2 ± 2.0 *  

RANTES 15.3 ± 1.7 16.1 ± 2.4 1.7 ± 0.2 *  

TNF-α 10.7 ± 1.6 10.6 ± 1.7 1.4 ± 0.1 *  

VEGF 23.7 ± 3.3 18.5 ± 2.4 6.7 ± 1.2 *  
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NO
1 

1.5 ± 0.3 1.2 ± 0.2 0.3 ± 0.1 *  

Data shown in pg/mL as Mean ± SEM (
1
NO unit is µM). Significant difference between non-

infected and infected groups is labeled with * (p<0.05), while difference between infected 

vehicle and infected H. perforatum group is highlighted with # (p<0.05). 
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Table 2. Mouse BAL cytokine and NO levels in 5 day infection study (high viral dose). 

Cytokines 

 

Infected vehicle 

(N=15) 
Infected H. perf 

(N=15) 
Non-infected 

(N=6) 

Statistical effect 

Infection H. perf 

Eotaxin 110.2 ± 23.9 194.9 ± 36.7 7.0 ± 2.0 * # 

G-CSF 3.2 ± 1.1 8.5 ± 2.1 0.0 ± 0.0 * # 

GM-CSF 21.4 ± 2.3 29.2 ± 2.1 0.8 ± 0.8 * # 

IFN-γ 497.4 ± 212.1 378.8 ± 141.2 0.4 ± 0.3 *  

IL-1a 13.1 ± 2.1 19.2 ± 2.3 3.6 ± 2.3 *  

IL-1b 10.1 ± 1.0 8.2 ± 0.4 3.0 ± 0.4 *  

IL-2 1.5 ± 0.1 1.4 ± 0.1 2.2 ± 0.3 *  

IL-3 1.7 ± 0.1 2.0 ± 0.2 1.0 ± 0.1 *  

IL-4 0.8 ± 0.1 0.9 ± 0.1 0.4 ± 0.0 *  

IL-5 26.2 ± 7.8 39.3 ± 10.1 0.1 ± 0.0 *  

IL-6 942.8 ± 205.6 1667.8 ± 301.9 0.3 ± 0.2 * # 

IL-7 0.7 ± 0.1 0.8 ± 0.1 0.2 ± 0.1 *  

IL-9 114.2 ± 15.3 120.0 ± 17.3 85.1 ± 18.3   

IL-10 75.2 ± 42.3 35.8 ± 8.3 0.1 ± 0.1 *  

IL12(p40) 6.7 ± 1.3 8.3 ± 1.4 3.3 ± 2.0   

IL-12(p70) 10.6 ± 1.9 16.4 ± 2.2 0.1 ± 0.1 * # 

IL-13 22.9 ± 4.7 42.2 ± 5.8 0.0 ± 0.0 * # 

IL-15 8.5 ± 1.0 13.3 ± 2.0 1.1 ± 0.5 * # 

IL-17 2.1 ± 0.3 2.4 ± 0.3 0.5 ± 0.1 *  

IP-10 2434.6 ± 248.2 1614.9 ± 98.8 4.5 ± 0.7 * 
˅

 

KC 150.7 ± 39.6 176.5 ± 24.2 11.3 ± 1.0 *  

LIF 119.2 ± 24.3 420.2 ± 98.4 0.6 ± 0.1 * # 

LIX 172.4 ± 129.6 3.2 ± 1.8 0.0 ± 0.0   

MCP-1 817.8 ± 188.1 1260.4 ± 174.0 0.3 ± 0.3 * # 

M-CSF 11.0 ± 1.5 16.1 ± 1.8 0.5 ± 0.4 * # 

MIG 8644.9 ± 2158 10772 ± 2203 8.2 ± 2.4 *  

MIP-1a 32.1 ± 5.7 31.6 ± 0.0 5.7 ± 1.7 *  

MIP-1b 131.8 ± 30.7 149.4 ± 26.2 1.4 ± 0.7 *  

MIP-2 89.7 ± 11.8 136.1 ± 14.1 3.8 ± 1.9 * # 

RANTES 15.7 ± 3.0 19.5 ± 1.9 1.3 ± 0.1 *  

TNF-α 8.2 ± 1.6 9.9 ± 1.2 1.3 ± 0.1 *  

VEGF 33.8 ± 8.7 30.2 ± 4.0 8.1 ± 1.2 *  

NO
1 

3.8 ± 0.5 5.1 ± 0.3 1.4 ± 0.6 * # 
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Data shown in pg/mL as Mean ± SEM (
1
NO unit is µM). Significant difference between non-

infected and infected groups is labeled with * (p<0.05), while difference between infected 

vehicle and infected H. perforatum group is highlighted with # (increased in H. perforatum 

group) and ˅ (decreased in H. perforatum group) (p<0.05).   
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Figure 1. 
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Figure 2.  
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Figure 3. 
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Figure 4.  
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Figure 5.  
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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Figure 12. 
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CHAPTER 6: GENERAL CONCLUSIONS 

Hypericum perforatum is the only Hypericum species that has been extensively studied 

for its bioactivities, major active constituents, and therapeutic efficacy in humans. Previously, 

Hammer et al. (2007) have characterized the light-activated prostaglandin E2 (PGE2) 

inhibitory activity of different preparations of H. perforatum extracts in lipopolysaccharide 

(LPS)-stimulated mouse macrophages (1). At the same time, some other Hypericum species 

are traditionally being used for wound healing purposes, suggesting that they have anti-

inflammatory potential as well (2). Besides common Hypericum constituents such as 

hypericin, flavonoids, and hyperforin, novel components like acylphloroglucinols can be 

found in several Hypericum species (3-4). At the same time, the abundance of the same 

constituents in different Hypericum species differs, making it worth the effort to study 

whether species other than H. perforatum also have anti-inflammatory potential and whether 

some of them have even stronger activity. To address this, 11 extracts were studied for their 

inhibition on LPS-induced PGE2 and nitric oxide (NO) production in macrophages. 

Although all extracts showed significant suppressive effect on PGE2 and NO at 30 µg/mL 

without showing cytotoxicity, the potency of inhibition varied. This finding suggests that if 

we are able to identify major active constituents and their interaction, improvement in 

Hypericum‟s anti-inflammatory efficacy may be achieved by modifying its phytochemical 

profile. 

Certain Hypericum species are known to contain abundant acylphloroglucinols (5-7). 

These compounds are traditionally associated with anti-microbial activities (3). More and 

more recent studies also found them to be anti-inflammatory both in vitro and in vivo (7-8). 
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H. gentianoides, H. balearicum, and H. beanii, all containing significant amounts of 

acylphloroglucinols, were included in the current study to evaluate their inhibitory potential 

on LPS-induced PGE2 and nitric oxide (NO) production in the well-characterized RAW 

264.7 macrophages. All extracts made with these species suppressed LPS-induced 

macrophage PGE2 and NO production by similar percentages. We focused on H. 

gentianoides, based on the preliminary findings by Hillwig et al. (2008), on the anti-

inflammatory potential of novel acylphloroglucinols in this species (9). Another reason for 

further investigating H. gentianoides instead of the other two species was that it did not 

contain pseudohypericin, the major player among the 4 compounds in H. perforatum 

regarding PGE2 and NO inhibition. Our results indicated that the concentrated 

acylphloroglucinols in the more lipophilic fractions 8 and 9 of H. gentianoides extract 

dramatically inhibited LPS-induced PGE2 and NO by more than 70% at ~10 µg/mL. 

Uliginosin A, a known acylphloroglucinol, was subsequently studied for its contribution to 

the PGE2, NO, and cytokine inhibitory potential of the extract and fractions. The results 

indicated ~ 50% inhibition of the inflammatory mediators by uliginosin alone at 2-2.6 µM, 

the concentration found in the active fractions. Significant inhibition on LPS-induced NO, 

TNF-α, and IL-1β production was seen in cells treated with uliginosin A at concentrations as 

low as 0.06 µM. Considering this is just one of the many acylphloroglucinols in the extract, it 

is reasonable to conclude that these compounds contribute significantly to the anti-

inflammatory potential of H. gentianoides ethanol extract. Comparison between different 

Hypericum species regarding acylphloroglucinols abundance is not yet available in the 

literature, so it is possible that species other than H. gentianoides contain more anti-

inflammatory acylphloroglucinols. Together with their anti-microbial activity, 
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acylphloroglucinols in Hypericum may prove useful in resolving infection-induced intestinal 

inflammation. 

Hammer et al.‟s prior work (2008) identified pseudohypericin, quercetin, amentoflavone, 

and chlorogenic acid, together as the „4 compounds‟, synergistically accounting for the 

majority of the PGE2 inhibition by a sub-fraction of H. perforatum extract (10). Because 

most people consume H. perforatum supplements made from whole extract, the contribution 

of the 4 compounds to the extract‟s anti-inflammatory potential is more relevant to clinical 

efficacy and was addressed in the current study. As expected, the 4 compounds accounted for 

a smaller portion of the extract‟s PGE2 inhibitory effect than it did in the sub-fraction. At the 

same time, the 4 compounds accounted for the majority of the extract‟s NO and IL-1β 

inhibitory activity. It is interesting that the 4 compounds reduced LPS-induced RAW 264.7 

macrophage tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, but the extract 

containing the 4 compounds did not show any significant inhibitory effect. These 

observations suggest the existence of anti-inflammatory constituents other than the 4 

compounds that contributed to PGE2, NO, and IL-1β inhibition. The absence of TNF-α and 

IL-6 inhibition with the extract treatment suggests counteractive interaction between 

compounds in the H. perforatum extract. Such compounds might be xanthones, flavonoid 

glycosides, and caffeic acid derivatives other than chlorogenic acid. However, it remains 

unclear why the 4 compounds‟ TNF-α and IL-6 inhibitory effects were voided when applied 

to cells in the context of the ethanol extract. 

Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator in cell signaling (11). 

A microarray study and confirmative quantitative real-time polymerase chain reaction (qRT-
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PCR) analyses found that the 4 compounds and the sub-fraction in which they were identified 

altered the transcription of genes involved in the Janus kinas signal transducer and activator 

of transcription (JAK-STAT) pathway (12). In particular, SOCS3 was activated by the 

treatments, suggesting this being a possible mechanism underlying the observed PGE2 

inhibition. Chapter 4 described the study designed to test the importance of SOCS3 in the 4 

compounds‟ and H. perforatum extract‟s anti-inflammatory potential. The overall results 

indicated that among the 4 compounds, pseudohypericin decreased LPS-induced PGE2 and 

NO through SOCS3 activation, while quercetin and amentoflavone contributed to the 

reduction in TNF-α, IL-6, and IL-1β through SOCS3 independent pathway(s). With regards 

to the extract, SOCS3 gene knockdown did not compromise its inhibition on LPS-stimulated 

PGE2 and NO, indicating constituents other than the 4 compounds exerted anti-inflammatory 

effect through SOCS3 independent pathway(s). As reported by Liu et al. (2008), LPS-

induced macrophage TNF-α and IL-6 production were found to be lower in cells with 

SOCS3 knockdown (13). Although this is irrelevant to the 4 compounds‟ inhibition of these 

cytokines, it indicated that the absence of a negative regulator can actually decrease pro-

inflammatory cytokine production. This highlights the complicated interaction and cross-talk 

between different intracellular signaling networks. 

Because LPS-stimulated macrophage IL-1β production was inhibited by the H. 

perforatum extract and the 4 compounds to a similar extent, while TNF-α and IL-6 were only 

inhibited by the 4 compounds, it is reasonable to speculate that the 4 compounds were the 

major cytokine inhibitory constituents in the extract. In order to explore possible pathways 

altered by the 4 compounds that may account for the SOCS3 independent cytokine inhibition, 
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the original microarray study data acquired by Hammer et al. (2010) were revisited. The 

Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to 

classify genes whose transcription were significantly changed by LPS stimulation and by the 

4 compounds, according to their functions (14-15). The analysis returned 22 functional gene 

groups that were significantly affected by both the LPS and the 4 compounds. Eight of these 

groups are related to immune and inflammation, including the B cell signaling pathway, T 

cell signaling pathway, cytokine-cytokine receptor interaction, JAK-STAT signaling pathway, 

natural killer cell mediated cytotoxicity, mitogen activated protein kinase (MAPK) signaling 

pathway, toll-like receptor (TLR) signaling pathway, and NOD-like receptor (NLR) signaling 

pathway. The inhibition of p38 MAPK by the 4 compounds can result in the reduced 

production of these cytokines. But if this is the only mechanism, the counteracting 

constituents in the extract should have also ameliorated IL-1β inhibition by the 4 compounds, 

unlike what was seen in the current study. Therefore, a hypothesized mechanism was 

developed and shown in Figure 1, which included the elevation of two genes in the NLR 

pathway as the microarray result indicated (16). In the proposed model, the MAPK pathway 

is mildly inhibited by the 4 compounds, but is not the major contributor to the cytokine 

inhibition.  The key regulators altered by the 4 compounds are NLR-CARD 5 (NLRC5), 

NLR-PYD 3 (NLRP3). The major function of NLRP3 is activating the inflammasome, which 

contains caspase 1 that converts pro- IL-1β into IL-1β (17). The function of NLRC5 has been 

recently characterized by Benko et al. (2010) (18). It inhibits the transcription of pro-

inflammatory molecules, including cytokines. The 4 compounds increased NLRC5 

transcription, according to the microarray data, and thus could inhibit the transcription of 

pro-IL-1β, TNF-α and IL-6. Under the 4 compounds treatment, NLRP3 was also increased 
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and thus may have promoted the conversion of pro- IL-1β into IL-1β. The NLRC5 mediated 

transcriptional inhibition on pro-IL-1β probably outweighed caspase-1conversion elevation, 

resulting in the reduced levels of all three cytokines observed in the current study. When the 

4 compounds were applied to the macrophage in the context of whole extract, counteracting 

compounds could have negated the NLRC5 increase, leading to the absence of TNF-α and 

IL-6 inhibition. In the aspect of IL-1β, the counteracting constituents could have directly 

inhibited NLRP3 and further inhibited IL-1β level by reducing IL-1 activation. This proposed 

mechanism is based on the microarray results and the cytokine inhibition data. In order to 

validate it, further studies will be needed to confirm the direct regulation of NLRC5 and 

NLRP3 by the 4 compounds.  
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 Immune response features the participation of both the immune cells and the non-

immune cells (19-20). Epithelial and endothelial cells are among the cells that frequently 

interact with immune cells. During influenza virus infection, respiratory epithelial cells 

encounter the viral particle before the immune cells and initiate the immune defense 

mechanism through the release of pro-inflammatory cytokines and chemokines (21). In A549 

human bronchoalveolar epithelial cells, H. perforatum extract significantly inhibited H1N1 

virus-induced monocyte chemotactic protein-1 (MCP-1) and IFN-γ-induced protein 10 kD 

(IP-10). However, IL-6 production by the epithelial cells was dramatically increased by the H. 

perforatum extract. These observations are quite different from our previous findings in 

macrophages, indicating both pro-inflammatory and anti-inflammatory potentials. The 

increased IL-6 production can promote the synthesis of PGE2 and NO by the macrophages, 

and thus potentiate pro-inflammatory cytokine and chemokine production by the immune 

cells, although the initial recruitment of immune cells may be inhibited due to the reduced 

MCP-1 and IP10 levels. On the other hand, cytokines and inflammatory mediators released 

by immune cells alter the behavior of epithelial cells as well, which determines pathological 

tissue damage and post-infection recovery (22). The highly dynamic interaction between 

epithelial cells and immune cells cannot be thoroughly studied in cell cultures, which was 

why we later investigated the in vivo immune-regulatory impact of the H. perforatum ethanol 

extract. 

Viral dose is an important determinant of the disease severity of mice infected by H1N1 

influenza virus (23). In the current study, the higher viral dose (10
11.9

 EID/mL) used in the 5 

day study apparently elicited earlier and steeper body weight loss in mice than the lower dose 
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used in the 6 day and 10 day studies (~10
9.0

 EID/mL). The immune-regulatory effect of H. 

perforatum was also affected by the viral dose and disease severity. In the low dose 6 day 

study, H. perforatum extract treatment had mild protective effect demonstrated by lower 

illness score, lower serum IL-6, and more moderate increase in lung index, in comparison to 

vehicle treatment. However, the same treatment imposed potentially detrimental impact on 

mice infected with high dose H1N1 virus during the 5 day study, indicated by the elevation 

in pro-inflammatory cytokines across-the-panel, higher lung viral titer, and larger population 

of infiltrated pro-inflammatory cells in the lung, compared to the vehicle control treatment. 

Judging from this, a high viral dose was required for H. perforatum extract‟s immune-

regulatory activity to disrupt anti-viral immune response. It is worth mentioning that other 

anti-inflammatory dietary agents have also been found to compromise anti-viral immune 

function. Schwerbrock et al. (2009) reported that a diet containing 4% fish oil significantly 

suppressed anti-influenza immune response in mice and increased morbidity and mortality 

(24). The difference between that study and our current one is that the fish oil diet decreased 

inflammation while the H. perforatum treatment resulted in increased inflammation. An 

adequate future study to answer the question of whether the stronger inflammation seen in H. 

perforatum treated mice during high dose influenza infection would affect mortality would 

be a 2-3 week infection study. Such a study could directly compare between survival curves 

of infected mice receiving vehicle or H. perforatum treatment. If the influenza mortality rate 

is increased by H. perforatum, it would be wise to use available epidemiology and drug 

monitoring data to further assess if there is a similar risk in humans.  
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The elevation of SOCS3 by the H. perforatum extract is of concern during influenza 

infection because recent studies showed that H1N1 virus manipulates SOCS3 activation to 

suppress anti-viral IFN signals early in the infection process (25). The increased SOCS3 

expression seen in macrophages, epithelial cells, and the lung of mice treated with the H. 

perforatum extract could facilitate early viral replication, especially when the infection dose 

is high. The higher viral dose can in turn induce stronger and longer inflammatory response 

and delay the resolution of infection, which fits our observation in the 5 day infection study. 

The mechanism whereby the constituents in H. perforatum promoted SOCS3 activation is 

unknown, but it is possible to use molecular biology methods to investigate the pathways 

involved. Although SOCS3 elevation during the early phase of influenza infection can affect 

adequate activation of viral clearance by the immune system, it can also inhibit unnecessary 

inflammation in the late phase and reduce tissue damage. Therefore, daily H. perforatum 

extract was administered in the 10 day infection study from 5 days post infection, in the hope 

that lung lesion could be alleviated without compromising viral clearance. The result showed 

almost identical lung lesion score between the vehicle and H. perforatum treated mice, thus 

failing to prove any benefits. 

Because SOCS3 is a non-specific negative regulator of the JAK-STAT signaling pathway, 

non-immune function can also be affected by SOCS3 activation. Insulin and leptin signaling 

is regulated through the MAPK and JAK-STAT pathways, and SOCS3 elevation has been 

identified as a mechanism of insulin and leptin resistance (26). In a recently published paper, 

Amini et al. (2009) found that H. perforatum extract inhibited adipogenesis of adipocytes and 

reduced the production of adiponectin, suggesting the extract induced insulin resistance (27). 
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Although no report about increased risk of metabolic syndrome associated with H. 

perforatum can be found, it is worth monitoring due to the large population of St‟ John‟s 

wort supplement consumers among diabetes patients (28). 

In conclusion, the current study confirmed the anti-inflammatory potential of constituents 

previously found in an H. perforatum ethanol extract and demonstrated that a novel group of 

potent anti-inflammatory acylphloroglucinols can be found in some other Hypericum species. 

Further, although SOCS3 activation by H. perforatum accounted for the inhibition of 

inflammatory mediators, it may also impair the immune defense against influenza infection. 

Caution is required until further studies address this possible contraindication when 

consumers are considering taking H. perforatum supplements at a time when they are at risk 

of influenza,. 
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